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ABSTRACT
Motivation: The identification of transcription factor binding sites
in promoter sequences is an important problem, since it reveals
information about the transcriptional regulation of genes. For analys-
ing transcriptional regulation, computational approaches for predicting
putative binding sites are applied. Commonly used stochastic models
for binding sites are position-specific score matrices, which show weak
predictive power.
Results: We have developed a probabilistic modelling approach,
which allows to consider diverse characteristic binding site proper-
ties to obtain more accurate representations of binding sites. These
properties are modelled as random variables in Bayesian networks,
which are capable of dealing with dependencies among binding site
properties. Cross-validation on several datasets shows improvements
in the false positive error rate and the significance (P -value) of true
binding sites.
Supplementary information: A more extensive description of valid-
ation results are available at http://www.bio.inf.uni-jena.de/Software/
promapper/
Contact: backofen@inf.uni-jena.de

INTRODUCTION
A fundamental challenge of recent biological research has been to
understand the transcriptional regulation of gene expression. A major
fraction of this regulation is exerted by the binding of transcription
factors to regulatory DNA elements (called transcription factor bind-
ing sites) in the upstream region of a gene (Alberts et al., 2002). It is
a standard procedure to determine these binding sites via biological
assays. The TRANSFAC database version 8.3 (Wingender et al.,
2001) contains ∼14 400 entries of experimentally determined sites.

Despite the quite strong sequence similarity among the binding
sites of a certain transcription factor, the relatively short sequence
motifs often show a certain degree of variability, and matches of one
such motif could be present by chance anywhere in a genome without
having regulatory functions. Hence, the development of highly spe-
cific and accurate computer-aided detection approaches is still an
unsolved problem (Levy and Hannenhalli, 2002).

Besides experimental approaches, such as expression analyses and
ChIP on chip, there are two widely used in silico strategies. The
first one, which is known as phylogenetic footprinting (Dieterich
et al., 2003; Brudno et al., 2003), is based on sequence comparison
of upstream sequences of orthologous genes from diverse species.

∗To whom correspondence should be addressed.

Highly conserved regions within these sequences are assumed to
have a functional meaning, because their similarity is likely to result
from a higher selective pressure. While phylogenetic footprinting is
very successful in predicting conserved regulatory patterns, it cannot
detect binding sites that only occur in one of the species.

The second widely accepted strategy, which is considered in this
paper, is to use stochastic models for predicting transcription factor
binding sites. Among these methods, the majority uses position-
specific score matrices (PSSMs) (Aerts et al., 2003; Boardman et al.,
2003; Kel et al., 2003). Each entry of such a matrix stands for the
frequency of certain nucleotides (matrix rows) in certain positions
(matrix columns) within the binding site motif (Stormo, 2000).

Albeit their predominant role, PSSMs have only weak predictive
power for several reasons. Besides the problems shared by most cur-
rent in silico approaches, namely the inability to model biologically
important circumstances, such as cooperativity between factors and
the positioning of nucleosomes (Wasserman and Sandelin, 2004), at
least two of them are symptomatical for PSSMs.

First, PSSMs assume statistical independence among the motif
positions. Recent literature shows that this is too strong an assump-
tion (Bulyk et al., 2002; Man and Stormo, 2001; Benos et al.,
2002).

Second, PSSMs are restricted to motif column distributions.
Therefore, they are not suited to describe sequence properties
of higher order. Examples of properties that cannot be mod-
elled using PSSMs are the sequence-dependent major-groove width
(Ponomarenko et al., 1999) around a binding site, the GC-content of
its flanking region or the presence of a co-acting factor’s binding site
in its neighbourhood (Grabe, 2002). Even if higher order properties
are representable, it will be problematic to integrate them since this
requires the learning of an enormous number of parameters. Usually,
there are not enough data available to learn these properties. Any such
property in a motif’s flanking region has to be modelled in PSSMs
with a number of parameters that is linear in the length of the flanking
region sequence.

We approach this problem by directly considering higher-order
sequence properties (we here call model features). Thus, we have to
learn only all possible values for the selected features instead of their
underlying sequence. To give a concrete example, it has been shown
that the binding sites for HFN1 show a significantly different melting
temperature of the surrounding region (Ponomarenko et al., 1999). To
model this observation, we need only one parameter, namely whether
the melting temperature is above or below a given threshold.

To learn these features together with the binding sites themself,
we employ Bayesian networks (BNs) (Mitchell, 1997) for several

3082 © The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org

http://www.bio.inf.uni-jena.de/Software/


Multiple-feature framework for predicting TFBS

reasons. First, they provide the necessary flexibility for choosing the
most predictive properties of the sites. Second, BNs overcome the
second obstacle of PSSMs, in allowing expression of dependencies
among these properties. It has been shown previously that depend-
encies between the positions of a motif are important (Bulyk et al.,
2002). Barash et al. (2003) first applied BNs to binding site predic-
tion. In contrast to our work, their application of BNs is an extension
of the PSSM by considering dependencies between sequence pos-
itions, without modelling more complex sequence properties. In
a related problem of predicting splice sites, Bayesian belief net-
works have already been used for modelling dependencies between
positions (Cai et al., 2000; Castelo and Guigo, 2004).

Here, we show that the classification error rates compared with
PSSMs can be reduced by our BN approach. We demonstrate
this approach by performing cross-validations on three datasets of
mammalian transcription factor binding sites.

MODELLING APPROACH
The goal of learning a model is to detect common properties between
different samples given in the datasets (e.g. a set of known bind-
ing sites for a given transcription factor). For this purpose, it is
common to describe these properties by a vector (F1, . . . , FK) of
features, whose values f1, . . . , fK can be extracted directly from
sample sequences. For PSSMs, these features are simply the nucle-
otides at the different positions. In our case, we have more complex
features like the leftmost starting position of a given consensus within
binding sites. Using more complex features, we are also able to char-
acterize important properties of the flanking regions such as structural
attributes. In addition, some of the more complex features are also
used as a technique for parameter reduction.

Now these features F1, . . . , FK are modelled as discrete random
variables, and the problem of learning is to estimate the joint probab-
ility distribution P(F1, F2, . . . , FK) from a set of training samples.
In the following, these random variables associated with the features
in our model are called model features. We currently distinguish
between five main classes of features (called feature types). The first
three are based on observations given in the literature.

Motif column feature (PSSM).Corresponds to column distribu-
tions of PSSMs. Clearly, it is possible to emulate usual PSSMs
with these features. Remarkably, even this feature alone is more
expressive than PSSMs since we can model dependencies among
the different columns.

Structural property feature. Approximation of the sequence-
dependent contribution to a physical property of DNA. Among the
38 parameters provided, there are conformational parameters such
as helical twist, helical slide or minor groove width (El Hassan and
Calladine, 1997) and physicochemical parameters like free energy
change or melting temperature. These parameters are defined for
dinucleotides. According to Ponomarenko et al. (1999), we compute
the average of a parameter for a given subsequence by summing up
the values of the dinucleotide steps (Fig. 1). This average is then com-
pared with the average calculated from a null model. Oshchepkov
et al. (2004) have developed a software tool for extracting such
structural patterns from a set of binding sites.

PSSM hits for co-acting factor’s site.Since the biological mean-
ing of a sequence as a binding site often depends on the presence of a
binding site for a co-acting transcription factor, features of this type
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Fig. 1. The structural feature. Here, the helical twist feature is selected.
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Fig. 2. The feature for the consensus TAR (R stands for A or G); (a) calcu-
lation of the feature values and (b) application of the feature in the case of an
inserted nucleotides.

evaluate whether or not there is a PSSM hit of a co-actor’s site in the
neighbourhood of the current position.

In addition, we add the following features that enhance the descript-
ive power and can be used to reduce the number of parameters:

Consensus match start position.Represent distributions over pos-
sible start positions of leftmost or rightmost matches of a given
consensus pattern within a given range. Features of that type can
help to detect deleted nucleotides in a subset of all training sites,
and hence influence the distribution of dependent motif columns
(Fig. 2).

Subsequence nucleotide profiles.Measure the coarse base com-
position of a given subsequence (e.g. a lower or higher A + T content
of the flanking region). This type of feature allows consideration
of sequence properties of high order with a minimum amount of
parameters.

The different features are summarized in Figure 3. To give a concrete
example of how these features can be used to reduce the number of
parameters, consider the binding sites for the transcription factor Sp1.
They usually contain a high proportion of C and G nucleotides. Even
though this can be observed for the flanking regions of these sites as
well, the exact positions of C and G nucleotides are only weakly con-
served. Modelling these flanking regions of length k with PSSM-like
motif column features would require the estimation of 4k parameters
without benefitting from it owing to the weak motif in the flanking
regions. In our approach, the observation of high C and G fractions
could be considered by including a suitable profile feature which
only needs two parameters (above or below a suitable threshold).

Though model features differ in their value range and their rules
for mapping sequences to feature values, we simply assume that
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Fig. 3. Currently implemented model features: (a) PSSM-like base distribution of one motif column, (b) base composition in a subsequence of the binding
site, (c) PSSM matches for co-acting factor’s sites in neighbourhood, (d) distribution over start positions of a particular consensus and (e) sequence-dependent
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they are discrete functions Fk : S × N �→ ran(Fk) from the Cartesian
product of the set S of DNA sequences and integers to the feature
range. The additional integer input determines a reference posi-
tion of the sequence. Since we cannot deal with continuous random
variables, the continuous ranges of structural property features and
subsequence profile features are discretized. The interval borders
for discretization are determined by an entropy-based algorithm
developed by Fayyad and Irani (1993).

Bayesian belief networks
Constructing a model for binding sites of a transcription factor
requires the choice of model features F1, F2, . . . , FK . The
next step is the estimation of the joint probability distribution
P(F1, F2, . . . , FK). If we assumed independence of the different
features as in the case of PSSMs, the joint distribution would be cal-
culated as the product of single probabilities of the feature values, i.e.
by

∏k
i = 1 P(Fi). However, we cannot assume statistical independ-

ence between features as we have mentioned above. Even if there
were no possible overlapping features (such as consensus features)
in the model, we still would have to model the dependencies between
the columns of the binding sites (Bulyk et al., 2002). This implies
that the joint probability has to be calculated based on conditional
probabilities modelling the dependencies.

However, it is not practicable to model all possible pairwise
dependencies, since the number of parameters to be estimated would
grow exponentially in the number of model features considered in this
case. Concomitantly, the available amount of training data is often
rather small for transcription factor binding sites. Bayesian belief
networks (BNs) are a good trade-off between these two extrema.
Formally defined, a BN is a pair B = (G, P). Its first component
G is an annotated directed acyclic graph whose vertices correspond
to random variables X1, X2, . . . , XK , and whose edges determine
direct dependencies between connected variables. The direction of

each edge denotes that the value of the parent node influences the
value of the child node. The network also encodes implicit independ-
ence assumptions in the sense that a random variable is independent
of its non-descendants, given its parents in G. The second compon-
ent P is a parameter set which quantifies the network. It contains
probability parameters pxk |πxk

= PB(Xk = xk| ∏xk
= πxk

) for each
possible value xk of random variable Xk and each configuration πxk

of the set of parent variables
∏

xk
(Friedman et al., 1997). So, a BN

B defines a unique joint probability distribution over all concerned
random variables X = {X1, X2, . . . , XK } given by

PB(x1, x2, . . . , xK) =
K∏

k = 1

PB(xk|πxk
). (1)

It is clear that our model features play the role of the random variables
in the BNs. Figure 4 shows what a BN constructed from diverse
model features and learned from a set of binding sites could look like.

Learning The input of the learning procedure is a set of aligned sites
with their corresponding contexts. The learning process of multiple-
feature TFBS models comprises three tasks: (1) the selection of an
appropriate set of model features, (2) the calculation of the depend-
encies between the different features (i.e. the determination of the
network structure) and (3) the estimation of the corresponding para-
meters (probabilities). The first task requires the second and third as
a subtask.

Concerning the selection of an appropriate feature subset, this
task is a common instance of the feature subset selection problem, a
widely researched problem concerning the dimensioning of classi-
fiers in pattern recognition. We have chosen to apply the sequential
floating feature selection (SFFS) method described by Pudil et al.
(1994), which works well with the type of optimization criteria used
in our case (namely classification error rate). We start with an initial
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Fig. 4. Multiple-feature BN model for transcription factor binding sites. The BN consists of so-called model features (random variables—the nodes of the
graph), stochastic dependencies (edges) among them, and a table of conditional probabilities for each node. An exemplary probability table is given on the right.
Different shapes and colours emphasize diverse types of model features. Each feature takes a particular subsequence to compute its values. The corresponding
intervals are shown below the input sequence).

feature set consisting of the motif column features for the aligned
positions of the binding sites. This implies that the corresponding
initial network is similar to a PSSM model, with the exception that
existing dependencies among the different positions can be handled
beforehand. Then, it successively adds that feature from the entirety
of features which leads to the highest improvement of the classifica-
tion performance. After each add-operation, the search algorithm
removes model features from the subset, as long as this improves the
performance previously achieved. Allowing the removal of previ-
ously chosen features avoids being trapped in a local optimum. The
algorithm stops when the previously determined number of model
features has been included in the feature subset.

For the second task of determining the best network structure,
given some training data, it is known that this an NP-hard problem
(Pearl, 1988). Hence, we confine ourselves to considering a subclass
of all possible network structures, in which the freedom of setting
up edges is constrained. In this subclass, for each model feature,
at most, one incoming edge is allowed. Thus, the probability of a
certain value of a model feature can depend on, at most, one other
model feature. Obviously, BNs that fulfil this property form a set
of trees. For that reason, they are called Tree-augmented networks
(TANs) (Friedman et al., 1997).

In the case of connected TANs (a TAN is connected if there is a
path from each node to any other node, not considering edge orienta-
tions), there are efficient structure-learning algorithms that reduce
the problem of determining the optimal tree structure to finding a
maximum-weighted spanning tree (Chow and Liu, 1968). After hav-
ing obtained such a spanning tree, a direction has to be assigned to
each edge of the tree. This is done by randomly choosing a root node
and orientating all edges to be directed outward to it. It was shown
that this procedure results in an optimal network structure among
all possible TAN structures (Friedman et al., 1997). The procedure
of Chow and Liu (1968) always results in connected graphs with
one edge per model feature. To achieve connectivity, some edges
are included without seeing any dependence between the accord-
ing features. Especially in cases in which two model features have
nearly constant values in all training samples, the mutual informa-
tion content (MIC) which is assigned to each edge and indicates
the interdependencies between adjoining features is not meaningful.

Therefore, the estimation of the conditional probabilities is far from
being robust. In order to circumvent this problem, we re-arrange
the tree network by removing all edges with an MIC below a given
threshold. As a consequence, the tree is split into several smaller
trees which finally form our network structure.

To perform supervised learning BNs with transcription factor bind-
ing sites, one needs a sample set of known binding sites justified with
respect to a reference position. We have chosen the reference position
to be the first position according to TRANSFAC (Wingender et al.,
2001). In addition, we must include as much flanking region relat-
ive to the reference position as the included model features demand.
Each site in the sample set has to be transformed into a vector of vari-
able assignments by applying the model feature functions. Finally,
these vectors are presented to the network learning procedure.

Application of trained models The procedure of scanning an input
sequence s = s1s2 · · · sL is quite similar to the learning process. Given
a model MF with a feature set F , a variable assignment vector
f (l) = (f1(l), f2(l), . . . , fK(l)) is computed for each position l of
the sequence. The network returns the joint probability of each vector.
Owing to the fact that a model feature could use base pairs upstream
of the reference position, some positions at the 5′ end of a sequence
cannot be evaluated (the same holds for the 3′ end).

To decide whether a sequence position is a putative binding site or
not, we compare the output probability PMF (f1, f2, . . . , fK) of the
binding site model with the output probability PN(f1, f2, . . . , fK)

of a background model. This is, according to the features which were
chosen, an equally dimensioned Bayesian belief network trained on
arbitrary eukaryotic promoter sequences, and could be done by using
the common log-odds scores

S(f ) = log2
PMF (f1, f2, . . . , fK)

PN(f1, f2, . . . , fK)
. (2)

This way of calculating scores does not ensure their comparability,
given the fact that models for different transcription factors can differ
in their sets of features. The reason is that, it is not possible to compare
probabilities produced by features of a different nature (e.g. ‘Is it
better to see a T at position 1 with probability 0.9 or to see a helical
twist above 34.5◦ with probability 0.75 at subsequence sm · · · sn?’).
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Furthermore, the question arises which features should be contained
in the background model.

We start to tackle these problems by determining the features that
should be integrated in the background model. Let U be the set of
all model features that occur in any model within our classification
system. Then the background model N is constructed by including all
features U ∈ U and learning the probability distribution and network
structure, based on the background data described above. The next
step is to expand each site model [i.e. the numerator in Equation (2)]
in a simple way to include the missing context of the background
model. Let F ⊂ U be the set of model features considered in a model
MF . All remaining features G = U −F are included in other models
and in the background model N . The scores would no longer be
comparable, if they were defined on a joint probability distribution
P(u) of all values u = (f , g) of the whole set U = F 	 G. Since the
features G ∈ G are supposed to contain no information about binding
sites modelled in MF (otherwise they would have been included in
the model), we assume that the contribution of G can be described
by the background distribution N . Starting from

P(u) = P(f , g) = P(f ) · P(g|f ), (3)

the first part of the product on the right is clearly substituted by the
joint probability PMF (·) of the binding site model MF . The second
part, which is not modelled in MF , is approximated by the condi-
tional probability of observing values g of variables in G, given the
values f of variables in F according to the background distribution
PN(·). Fortunately, efficient algorithms to approximate these condi-
tional probabilities with Bayesian belief networks exist (Lauritzen
and Spiegelhalter, 1988). For each model MF with its corresponding
feature set F ⊂ U , scores are calculated with respect to:

S(u) = S(f , g)= log
P(f , g)

PN(f , g)

≈ log
PMF (f ) · PN(g|f )

PN(f , g)
. (4)

By computing the scores in this way, we achieve comparable scores.
Note that the conditional probability in the numerator of Equation (4)
differs with respect to the particular decomposition U = F 	 G.
Cancelling down to S(u) = log[PMF (f )]/[∑g PN(f , g)] is theor-
etically possible, but requires the computation of the huge margin-
alization over all assignments of variables in G, which is technically
not feasible.

MATERIAL AND RESULTS
In order to evaluate our modelling approach we have performed tests
on three datasets. We restricted ourselves to genomic sequences.
Artificial sequences, such as those of SELEX experiments, were not
taken into account, since they do not contain an appropriate context.

Data
The first dataset consists of 26 experimentally proven MEF-2 bind-
ing sites. MEF-2 is a transcription factor, which is involved in the
regulation of several genes concerning skeletal, smooth and cardiac
muscles. The binding sites of the MEF-2 dataset were taken from a
study of Wasserman and Fickett (1998), and from the TRANSFAC
database (Wingender et al., 2001). The second dataset contains 78
AP-1 boxes. These are binding sites for either heterodimers made
of transcription factors JUN and FOS, or for homodimers made of

two JUN molecules. The sequences of this dataset were taken com-
pletely from TRANSFAC. As a third transcription factor we have
chosen, Sp1, which is ubiquitous in most tissues and cell states. Sp1
is a member of the class of zinc-finger transcription factors. Three
zinc fingers handle the binding to target DNA. The preferred binding
sequence is quite G rich. In all datasets, the binding sequences given
in TRANFAC were enriched with their flanking regions obtained via
the EMBL links (Stoesser et al., 1999) given in TRANSFAC entries.

Procedure
We compared the classification performance of our approach
with PSSM models using the 10-fold cross-validation technique.
Although PSSM can be based on many different scoring schemes
[e.g. free-energy change (Stormo and Fields, 1998)], we follow the
approach of Barash et al. (2003) and use PSSMs modelling nucle-
otide distributions for each position of the binding site. Note that this
is the type of PSSM used in the TRANSFAC tools (Kel et al., 2003).

This means that in each trial, a PSSM model and a multiple-feature
TAN model were learned using 90% of the dataset. PSSMs were
trained and applied using the weight matrix framework of BioJava.
After being learned, both models were used to detect the remain-
ing 10% of the sample in a test set consisting of these samples and
5000 random sequences. We used random sequences to lower the
risk of finding unknown, but true, binding sites within promoter
sequences which would have been counted as false positives (FPs).
These random sequences were sampled using a third-order Markov
chain trained on the promoter sequences of the particular dataset.

Thus, a complete cross-validation consists of 10 trials. Each bind-
ing site was used exactly one time for testing the models. For each
trial, models are tested on positive and negative samples. Posit-
ive samples are the 10% test binding sites, negative samples are
sequence-windows of random sequences. For each sample in a test
set, a score is calculated. Knowing the label (positive or negative)
of all samples in a test set, we were able to enumerate a common
contingency table with the four statistics: true positives (TPs), true
negatives (TNs), FPs and false negatives (FNs) for a given score
threshold. Contingency tables were used to create ROC plots in the
following manner: Calculate an entry in contingency tables for a TP
rate of x%, the x% best scoring positive samples, where taken; the
worst score among this set was taken as a threshold to calculate the
corresponding FP rate.

Furthermore, we have used exemplary contingency tables to cal-
culate the F0.5-measure: F0.5 = (2 · r · p)/(r + p), where the recall
r = TP/(TP + FN) is the part of real sites that were considered as
matches, and the precision p = TP/(TP + FP) is the fraction of TPs
among all matches. Hence, the F0.5-measure describes the quality of
a model considering both, the ability to detect binding sites and the
ability to avoid FPs.

Scores of negative samples were used to estimate a score distri-
bution for the relevant model. Therefore, it was assumed that scores
are distributed according to an extreme value distribution (Durbin
et al., 1998). The parametric approximation of the score distribution
provides an easy computation of P -values of scores. The P -value of
the mean of all positive sample scores was computed for each model
as a measure for the expected number of FPs.

Results
The cross-validation experiments revealed a better performance of
our multiple-feature TAN models, compared with PSSMs in all
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Fig. 5. ROC plots of multiple-feature TAN models (solid line) and PSSMs
(dashed line) for (a) MEF-2 dataset, (b) AP-1 dataset and (c) Sp1 dataset.
They were calculated by successively setting thresholds so that a defined
TP rate was established and by determining the FP rate for each of these
thresholds.

calculated quality measures. The ROC-plots of Figure 5a–c illustrate
that TAN models achieved lower FP rates for almost every fixed TP
rate. Two properties of these plots deserve closer attention: first, the
minimal fixed TP rate that leads to a vanishing FP rate is higher
for TAN models than for PSSMs. Second, when adjusting the score
threshold to a TP rate of 100%, the FP rates of TAN models are lower
by a multiple compared with PSSMs. One reason for these reduced
error rates is shown for the AP1 dataset in Figure 6 (analogous plots
for the other datasets are given in the supplements). In the figure,
estimated score distributions for random sequences on the one hand

pr
ob

ab
ili

ty
 P

(s
)

score s
–30 –20 –10 0  10  20

 .14

 .12

 .1

 .08

 .06

 .04

 .02

0

Fig. 6. Score distributions of multiple-feature TAN models (solid line) and
PSSMs (dashed line) for the AP1 dataset. The two leftmost curves denote the
probability distribution of random sequence scores assigned by both models,
the two rightmost curves denote the distribution of scores assigned to true
binding sites. The larger distance between the means of both TAN curves com-
pared with that of both PSSM curves promises improvement in classification
error rates.

Table 1. Overview of calculated measures for all datasets

Dataset Model type Mean TP P -value Best F0.5-value

MEF-2 PSSM 0.00406 0.90
TAN 0.00054 0.94

AP1 PSSM 0.01856 0.79
TAN 0.00659 0.81

Sp1 PSSM 0.00966 0.91
TAN 0.00513 0.93

In all cases our TAN approach shows lower P -values for real binding sites and higher
F0.5-value.

and true binding sites on the other hand were drawn for both, TAN
models and PSSMs. While a better separation of random sequences
and true sites is achieved by higher scores for true binding sites and
lower scores for random sequences, this alone does not ensure lower
error rates. What is crucial is a reduction of the cutting area under
the two curves of TAN models compared with those of PSSMs. The
features-selection algorithm (SFFS) described in the Method section
prefers model feature sets with these properties.

Another commonly used measure for the quality of prediction is
the P -value of a true binding site, according to the estimated random
sequence score distribution. The P -value for the average true-site
score is lower for TAN models than for PSSMs in all datasets. At the
same time, the additionally calculated F0.5-measure, which reflects
the overall performance of a model, is higher for TAN models in all
cases. The comparisons according to these two measurements are
listed in Table 1.

MEF-2. In contrast to the other datasets, the number of model fea-
tures was fixed at 10 owing to the small number of samples. The
SFFS algorithm found consensus features (e.g. for the consensus
TNWWW between positions 1 and 5), profile features (e.g. the fraction
of adenine nucleotides between positions 1 and 10) and structural
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features (e.g. the free-energy change between positions 3 and 5 to be
lower/higher than −1.3). A complete description of the model feature
set is included in the Supplementary Material. The PSSMs, which
were used for comparison with our TAN models, were designed to
model positions −4 to 13 (same positions as in the PSSM given in
TRANSFAC).

AP1 and Sp1. Since these datasets have a more comfortable
size, we adjusted the number of model features to 15. Besides
some of the nucleotide features of the initial feature set, the SFFS
algorithm included several additional features of nearly all types. In
the case of the AP1 model, these were mainly structural features.
In the case of the Sp1 model, the SFFS algorithm obtained profile
features and structural features to be predicative for Sp1-binding
sites. As for MEF-2, the PSSMs, which were used for comparison,
were dimensioned according to the positions that are considered in
TRANSFAC.

CONCLUSIONS
We have developed a flexible modelling approach for transcrip-
tion factor binding sites that allows the consideration of arbitrary
sequence-related or measurable biological properties of binding
sites. The binding site properties, which are called model features,
are modelled together in Bayesian belief networks.

We have presented a study on this framework, where we have
implemented five possible binding site properties. We have used
structural features (such as helical twist) in combination with
standard sequence features (such as consensus start-positions or
motif-column distribution). We have presented an approach to auto-
matically learn the set of features that are predicative for the modelled
binding site.

To validate our approach, we compared its predictive power to
that of PSSM models. Therefore, we performed cross-validation
tests on two datasets, namely MEF-2 binding sites, AP-1 boxes and
Sp1 binding sites. In all cases we find considerable improvement of
classification error rates using TAN models.
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