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Abstract. We presenbi RNA, a novel algorithm for prediction of binding sites
between two RNAs based on minimization of binding free energy. Similar to
RNAup approach [30], we assume the binding free energy is the sum ofskcces
bility and the interaction free energies. Our algorithm maintains tractability and
speed and also has two important advantages over previous similaaahps:

(1) bi RNA is able to predict multiple simultaneous binding sites and (2) it com-
putes a more accurate interaction free energy by considering both ol&eutar

and intermolecular base pairing. Moreov@rRNA can handle crossing interac-
tions as well as hairpins interacting in a zigzag fashion. To deal with simuoitsne
accessibility of binding sites, our algorithm models their joint probability of pein
unpaired. Since computing the exact joint probability distribution is intractable
we approximate the joint probability by a polynomially representable graphic
model namely a Chow-Liu tree-structured Markov Random Field. Expsatal
results show thatii RNA outperformsRNAup and also support the accuracy of our
approach. Our proposed Bayesian approximation of the Boltzmannpgabg-
bility distribution provides a powerful, novel framework that can also tiezed

in other applications.

1 Introduction

Following the recent discovery of RNA interference (RNAf)e post transcriptional si-
lencing of gene expression via interactions between mRMAglzeir regulatory RNAs,
RNA-RNA interaction has moved from a side topic to a centeakarch topic. Recent
studies have shown that a large fraction of the genome gisesa RNA transcripts
that do not code for proteins [40]. Several of these nonfapdNAs (NncCRNAS) reg-
ulate gene expression post-transcriptionally througte lgsring (and establishing a
joint structure) with a target mRNA, as per the eukaryoti®@As and small interfer-
ing RNAs (siRNAs), antisense RNAs or bacterial small regniiaRNAs (SRNAS) [16].
In addition to such endogenous regulatory ncRNAs, antesetigonucleotides have
been used as exogenous inhibitors of gene expressionemseigechnology is now
commonly used as a research tool as well as for therapeutioges. Furthermore,
synthetic nucleic acids systems have been engineeredftasseimble into complex
structures performing various dynamic mechanical motions



A key tool for all the above advances is a fast and accuratguatational method
for predicting RNA-RNA interactions. Existing compreh&esmethods for analyz-
ing binding thermodynamics of nucleic acids are compunaliy expensive and pro-
hibitively slow for real applications [1, 9]. Other exisgirmethods suffer from a low
specificity, possibly because several of these methodsdmnestricted versions of
the problem (e.g. simplified energy functions or restridigmbs of interactions) - this is
mostly for computational reasons. In this paper we preseiaigorithm to predict the
binding sites of two interacting RNA strands. Our most intpot goal in this work is
tractability as well as high specificity. While our algoritteansiders the most general
type of interactions, it is still practically tractable byaking simplifying assumptions
on the energy function. These assumptions are howeverahatud adopted by many
other groups as well [6, 22, 30, 41].

Our contribution

We give an algorithm to predict the binding sites of two iatting RNAs and also the
interaction secondary structure constrained by the predlicinding sites. As opposed
to previous approaches that are able to predict only oneargrsite [6, 30, 42], our al-
gorithm predicts multiple simultaneous binding sites. Vééirte a binding site to be a
subsequence which interacts with exactly one binding sitee other strand. Crossing
interactions (external pseudoknots) and zigzags (seeofl§xact definition) are par-
ticularly allowed. To the best of our knowledge, this allofws the most general type
of interactions considered in the literature. Althoughrantolecular pseudoknots are
not considered in the current work, they can be incorporatiedour framework at the
expense of additional computational complexity.

Following theRNAup approach [30], we assume the total interaction free energy i
the sum of two terms: (1) the free energy needed to make lyrsiies accessible in each
molecule and (2) the free energy released as a result ofrintecular bonds formed
between the interacting binding site pairs. Based on thexggrmodel, our algorithm is
essentially composed of three consecutive steps: (1)ibgilltree-structured Markov
Random Field (MRF) to approximate accessibility of a cdltat of potential binding
sites, (2) computing pairwise interaction free energigspimtential binding sites of
one strand against those of the other strand, and (3) findiminemum free energy
matching of binding sites. UnlikeNAup that computes only the hybridization partition
function for step (2), our algorithm computes the full istetion partition function [9].
Therefore, our algorithm not only considers multiple sitaneous binding sites but
also computes a more accurate free energy of binding.

The time complexity of the first two steps@(n®r + m*s+ nmw?) in whichn and
mdenote the lengths of sequencsgienotes maximum binding site length, and nw
ands < mw are the number of potential sites heuristically selectedbthe O(nw) and
O(mw) possible ones. More importantly, the space complexity effitst two steps is
O(r? 4+ & 4+ nmw?). The third step requires a nontrivial optimization namelkpimum
energy bipartite matching of two tree-structured Markownéam Fields, a topic on
which we are currently working. In this paper, we implememeahaustive search for
the third step. Therefore, the running time of the third ssepurrentlyO(r*s¢) where
K is the maximum number of simultaneous binding sites.



Related work

Since the initial works of Tinoco et al. [43], Nussinov et @1], and Waterman and
Smith [46] several computational methods have emergeditty she secondary struc-
ture thermodynamics of a single nucleic acid molecule. €hagial works laid the
foundation of modern computational methods by adopting/eleliand conquer strat-
egy. That view, which originally exhibited itself in the farof a simple base pair count-
ing energy function, has evolved into Nearest Neighbor moelynamic model which
has become the standard energy model for a nucleic acidd&gostructure [26]. The
standard energy model is based on the assumption thatrsjaloise pairs and loop
entropies contribute additively to the free energy of a eiechcid secondary structure.
Based on additivity of the energy, efficient dynamic progmgng algorithms for pre-
dicting the minimum free energy secondary structure [3148747] and computing the
partition function of a single strand [14, 27] have been tgwed.

Some previous attempts to analyze the thermodynamics dipteuinteracting nu-
cleic acids concatenate input sequences in some order aisitleo them as a single
strand. For exampleai r f ol d [2] and RNAcof ol d from Vienna package concatenate
the two input sequences into a single strand and predictiitsmam free energy struc-
ture. Dirks et al. present a method, as a parNd?ack, that concatenates the input
sequences in some order, carefully considering symmethsaquence multiplicities,
and computes the partition function for the whole ensembleomplex species [13].
However, concatenating the sequences is not accurateaat eMen if pseudoknots are
considered, some useful interactions are excluded whileymaysically impossible
interactions are included. Several other methods, sudiNasybrid [35], UNAFol d
[12, 24], andRNAdupl ex from Vienna package avoid intramolecular base-pairing-in e
ther strand and compute minimum free energy hybridizattmosdary structure. Those
approaches naturally work only for simple cases involviidally very short strands.

Alternatively, a number of studies aimed to take a more fumefgtal stance and
compute the minimum free energy structure of two intergcstrands under energy
models with growing complexity. For instance, Pervouchilegised a dynamic pro-
gramming algorithm to maximize the number of base pairs anioteracting strands
[33]. A followup work by Kato et al. proposed a grammar baspgraach to RNA-
RNA interaction prediction [18]. An approximation algdmih for RNA-RNA interac-
tion prediction is given by Mneimneh [28]. More generallykan et al. [1] studied the
joint secondary structure prediction problem under thiferént models: (1) base pair
counting, (2) stacked pair energy model, and (3) loop energgel. Alkan et al. proved
that the general RNA-RNA interaction prediction under hiiee energy models is an
NP-hard problem. Therefore, they suggested some natunatreints on the topology
of possible joint secondary structures, which are satidfiedll examples of complex
RNA-RNA interactions in the literature. The resulting aligfom computes the mini-
mum free energy secondary structure among all possiblegetondary structures that
do not contain (internal) pseudoknots, crossing intevast{i.e. external pseudoknots),
andzgzags (see [1] for the exact definition). In our previous work [9e\gave an al-
gorithmpi RNA to compute the partition function, base pair probabiljtaasd minimum
free energy structure over the type of interactions thabAlkt al. considered. We ex-
tended the standard energy model for a single RNA to an enmaagel for the joint



secondary structure of interacting strands by consideravgtypes of (joint) structural
components. Althouglpi RNA outperforms existing alternatives, i@®(n*n? + n?n*)
time andO(n’n¥) space complexity make it prohibitive for many practicaktisalarly
high-throughput, applications.

A third set of methods predict the secondary structure df @adividual RNA inde-
pendently, and predict the (most likely) hybridizationegn accessible regions of the
two molecules. More sophisticated methods in this categieny interaction as a multi
step process [6, 30, 45]: (1) unfolding of the two molecutesxpose bases needed for
hybridization, (2) the hybridization at the binding sitedg(3) restructuring of the com-
plex to a new minimum free energy conformation. Some apfreamn this set, such as
I nt aRNA[6] andRNAup [30], assume that binding happens at only one location, wikic
not the case for some known interacting RNAs such as OxyS{8jland CopA-CopT
[20, 21]. Those programs are able to predict only one binditey so in this paper, we
consider multiple simultaneous binding sites.

2 Preliminaries

Our algorithm is based on the assumption that binding istipety a stepwise process,
a view that has been proposed by others as well [1, 6, 22, ROitteal world, each
nucleic acid molecule has a secondary structure befonegaiddrt in any interaction. To
form an interaction, as the first step the individual secondauctures are deformed so
that the binding sites in both molecules become unpairedhésecond step, pairwise
matching between the binding sites takes place. Each stsixiated with an energy
the sum of which gives the free energy of bindihG. Specifically, denote the energy
difference that is needed for unpairiaij the binding sitesin R andS by EDR andEDS
respectively, and denote IAGES the free energy that is released as a result of binding.
Similar to [30],

AG = ED{ + EDj +AG®. (1)

This assumption is intuitively plausible because each oudeneeds to expose
its interacting parts before the actual binding happensemer, these two steps are
assumed to be independent from one another. Note that peegigproaches such as
[ nt aRNA [6], RNAup [30], and RNApl ex [42] consider only one binding site in each
molecule, which makes the problem easier, whereas we @mnsidltiple binding sites.
Itis sometimes argued that nature does not usually favdnitidy entangled structures
[30]. Our algorithm easily accommodates an upper bound emtimber of potential
binding sites, which is another advantage of our approach.

To reduce the complexity, we assume that the length of a patdrinding site is
not more than a window size& in this work. This is a reasonable assumption, which
has also been made in similar approaches [30], as most kndi#aRRNA interactions
such as OxyS-fhlA and CopA-CopT do not exhibit lengthy bimgdsites [3, 20, 21]. We
call a subsequence of length not more thaasite.

3 Algorithm

Based on the assumption above, our progba®NA finds a combination of binding
sites that minimizeAG. Let /R and 1/ denote the set of potential binding sites, which



is the collection of subsequences of length not more thiam our case, oR and S
respectivelybi RNA is composed of five consecutive steps:

(I) For every siteW = [i, j] in ¥R or 7S, compute the probabilitPR(W) or PS(W)
thatW is unpaired.

(1) For every pair of site§\; andW,, compute the joint probabilitieBT(Ws,We) and
PUS(Wl,\Nz) thatW;, andW, are simultaneously unpaired.

(1) Build tree-structured Markov Random Fields (MRB)R = (/R £R) and 7S =
(S, £5) to approximate the joint probability distribution of mulk unpaired
sites. Denote th@ -approximated joint probability of unpaired sités, Ws, ... .\ Wk
by P (Wi, Wa, ... ,\WL).

(Iv) ComputeQ\'NRws, the interaction partition function restricted to subsamresVR
andWs, for everyWR e ¢/RandwsS e /S,

(V) Find a non-overlapping matching = {(WRW3), (WRWS), ..., (WRWS)} that
minimizesAG(M) = ED}(M) +EDS(M) +AGRS(M), in which

ED(M) = —RT logP (W WS, ... W) )

EDS(M) = —RT logP (WS WS, ... W) (3)

AGRS(M) = —RT > log(Q}yryys — QurQus)- (4)
15=k P v

Above,Ris the universal gas constant ahds temperature. To demonstrate (2) and (3),
let for instancePR(WR,WE, ... \WR) be the exact probability that the sites are unpaired.
In that caseEDR(WR W, ... WF) = AGRWR WR, ... ,\WR) — AGR, and

AGRWR WS, W) — AGR = —RT log Qr(W, WSS, ... W) + RT logQr
Qr(WR WR ... WR)
g
Qr

in which Qg is the partition function oR and Qr(WR,WE, ... ,\WR) is the partition
function of those structures in whithtR, WE, ...\ WR are unpaired.

In the following, we describe each step in more details. lctiSa 3.1 we explain
(I) and (I1) above. Section 3.2 is dedicated to (lll) and diderence in tree-structured
Markov Random Fields namely computiRg. In Section 3.3 we describe (IV). Finally,
(V) is presented in Section 3.4.

)
= —RTlo

= —RTlogP{ (W WS, ... W),

3.1 Accessihility of Site Pairs

As part of RNAup, Mickstein et al. present an efficient algorithm for computing
probability of an unpaired subsequence [30]. Their alparicomputes the probability
of being unpaired for all subsequence©ifn®) time in whichn is the sequence length.
Based orRNAup algorithm, we present a®(n*w) time andO(n?) space complexity
algorithm to compute the joint probabilities of all unpaiiste pairs. For every site, our
algorithm uses constrained McCaskill's [27] and cons&dRNAup algorithm to com-
pute the conditional probabilities of all other unpairetdsequences. There agnw)
sites for each of which the algorithm tak®én®) time. For triple joint probabilities, the



same method is applicable but the running time will be mli¢tgpby another factor of
O(nw). Therefore, we only compute pairwise probabilities andrapimate the whole
joint probability distribution by graphical models.

3.2 Simultaneous Accessibility of Multiple Sites

To deal with simultaneous accessibility of binding sites,must model their joint prob-
ability of being unpaired. One way is to compute the exacttjprobability distribution
by using constrained McCaskill's algorithm [22]. For evepflection of sites, the algo-
rithm has polynomial time complexity, however, since thame exponential number of
different collections, this rige approach is intractable. In this paper, we approximate
the joint probability by a polynomially representable dregal model namely a Markov
Random Field. Graphical models, including Bayesian Netwand Markov Random
Fields, are powerful tools for approximating joint prodatas. They generally have
enough expressive power, which intuitively explains whg thference problem for
general graphical models is NP-hard [11]. Fortunatelygliean efficient inference al-
gorithm for tree-structured models [32]. In this work, welth@ Chow-Liu tree, which
is a tree-structured Markov Random Field, to approximageetkact joint probability
distribution [10].

To describe the Chow-Liu algorithm, &t be the complete weighted graph 6f
the set of potential binding sites, in which the weight of dgebetweei\y andW, is
I (Wi, Ws), the mutual information given by

- P(X1,%2)
|(W1,VV2) = Xlg{v\%NWl} P(Xl,XZ) log (P(Xl)P(Xz)> . (6)
XpE{Wp,~Wo }

Above, P(Wy, ~ Ws) is for instance the joint probability th&¥ is unpaired and\, is
not unpaired. In Section 3.1, we explained how to computgdim probabilities of
all site pairs. The following equations calculate all theessary terms fro®(\Wy,Ws):
P(Wi, ~Wo) = P(Wy) — P(W1,Wb), P(~ Wi, Wa) = P(Wa) — P(W1,Ws), P(~ Wi, ~ W) =
1-PW) — P(Ws) + P(Wi,Ws). The Chow-Liu treeT is the best tree-structured ap-
proximation for a joint probability distribution, in the i3ge that7 has the maximum
mutual information with the joint probability distributio[10]. Chow and Liu proved
that 7' is the maximum spanning tree of. To computeZ, we use a standard max-
imum spanning tree algorithm such as Chazelle’s algoritfim\[ve refer the reader
to [17] or [32] for a detailed description of inference algiom in 7. In summary,
Pr(Wi,Wo, ... ,\Wk) is computed by marginalizing ovel\ {\W,W,... W} the joint
probability distribution defined by . Inference inZ” can be done i®(|7/|) time [17].

3.3 FreeEnergy of Interaction

The local free energy of interaction for a pair of si&8 andwS is —RT Iog(Q\'NRWS —
QwrQys) in which Q' is the interaction partition function restricted YéR and WS
[9] and Q is McCaskill's partition function restricted t@/. Note that a simple ver-
sion of Q' would calculate only the hybridization partition functibetweerWR and
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WS (see [30]); however, this would exclude any intramolecstancture in the bind-
ing sites. For that reason, we use our approactQfowhich considers intermolecular
as well as intramolecular structures. Our modified algorith the dynamic program-
ming in [9] that starts witHgr = 1,Is = 1 and incrementally computes all the recur-
sive quantities up tégr = w,Is = w. Therefore, the windowed version of our interac-
tion partition function algorithm ha®(nmw?) time andO(nmw?) space complexity, in
which n andm are the lengths oR andS respectively. Finally, for a non-overlapping
matchingM = {(WR WD), WRWS), ..., (WRWS)} the free energy of interaction is
AGE(M) = —RT 314 109(Q a5 — QurQuys): whereQ) s — QurQus is the par-
tition function for those structures that constitute asteme intermolecular bond. Note
that this is based on the simplifying assumption in Section 3

3.4 Binding SitesMatching

Having built the machinery to computes for a matching of binding sites, we would
like to find a matching that minimize8G. To clarify the importance and difficulty of
the problem, suppose the binding sites were independehiasB,{\W;, Wb, ..., W) =
Pu(Wp)P,(Wo) - - - Py (W ). In that case, the problem would reduce to finding a minimum
weight bipartite matching with weight/R, W=) = —RT log [P} (WR)PS(W2)(Q), s —

L

QurQps)]- There are efficient algorithms for minimum weight bipartitetching, but
! ]

the issue is that the independence assumption is too cruaeagproximation. There-
fore, we propose the following problem, which has not bedwesbto our knowledge:

Minimum Weight Chow-Liu Trees Matching Problem

Given a pair of Chow-Liu treeg R = (7R £R) and 7S = (7S, £5), compute a non-
perfect matching/l between the nodes @fR and7 that minimizesAG(M).

Input: Chow-Liu trees7R and 7S,

Output: A matchingM = {(WR WS), (WRWS),..., (WRWS)} ¢ VRx VS,

The complexity of minimum weight Chow-Liu trees matchinglpiem is currently
unknown. We are working on the problem, and we hope to eitterepits hardness or
to give a polynomial algorithm; we incline toward the latlarthis paper, we implement
an exhaustive search on single, pair, and triple sites.

3.5 Complexity Analysis

Let n denote the length oR, m denote the length 08, andw denote the window
length. Step (I) of the algorithm take3(n® + m?) time andO(n? 4- m?) space. If we
consider all site pairs, then (II) tak€n*w+ mfw) time andO(n®w? + mPw?) space
to store the joint probabilities. It is often reasonable lterfipotential binding sites, for
example based on the probability of being unpaired or theraction partition func-
tion with another site in the other molecule. Suppog®tential sites out ofiw possi-

ble ones and sites out ofmw ones are selected. In that case, (II) takga’r -+ mes)
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time andO(r? +s?) space. Step (IIl) take®(r?a(r?,r) + s%a(s?,s)) time whered is
the classical functional inverse of the Ackermann funcf{ith The functiona grows
extremely slowly, so that for all practical purposes it maydwnsidered a constant.
Step (IV) takesO(nmw*) time andO(nmw?) space. In this paper, we implement an
exhaustive search for (V). Therefore, its running time igeuntly O(r¥s¢) wherek is
the maximum number of simultaneous binding sites. Theeeftre algorithm takes
O(n®r + m3s+ nmw? 4 r*s¢) time andO(r? + s> + nnw?) space. Note that < nw and

s < mw, so that the algorithm ha®(n*w + mfw + n?mPw?) time andO(n?w? + mPw?)
space complexity without heuristic filtering, considerimgximum two simultaneous
binding sites. We are working on (V) and hope to either findféinient algorithm or to
prove the problem’s hardness.

3.6 Interaction Structure Prediction

Once the binding sites are predicted, a constrained minifneenenergy structure pre-
diction algorithm predicts the secondary structure of €RbIA. For each binding site
pair, a modified version of our partition function algoritim[9] yields the interac-
tion structure. Our partition function algorithm is moddfiéor structure prediction by
replacing summation with minimization, multiplicationtiwisummation, and exponen-
tiation with the identity function.

4 Results

To evaluate the performance bif RNA, we used the program to predict the binding
site(s) of 21 bacterial SRNA-mRNA interactions studiedhe literature. Since all these
SRNAs bind their target in close proximity to the ribosomeding site at the Shine-
Dalgarno (SD) sequence, we restricted the program to a wilndmaximum 250 bases
around the start codon of the gene. We compared our restuhsthdse obtained by
RNAup on the same sequences with the same windowvgize20. The results are sum-
marized in Table 1RNAup andbi RNA have generally very close performance for the
cases with one binding site. However,RNA outperformsRNAup in some single bind-
ing site cases such as GcvB-gltl. That is beceaig®NA uses the interaction partition
function as opposed to the hybridization partition functicsed byRNAup. The interac-
tion partition function is more accurate than the hybritdaa partition function as the
interaction partition function accounts for both interellar and intramolecular base
pairing [9]. Also,bi RNA significantly outperform&NAup for OxyS-fhlA and CopA-
CopT which constitute more than one binding site. We nottbedl our predicted ener-
gies are generally lower than those predictedR§up which may be due to different
energy parameters. We used puRNA energy parameters [9] which in turn are based
onUNAFol d v3. 6 parameters [24].

We implementedii RNA in C++ and used OpenMP to parallelize it on Shared-
Memory multiProcessor/core (SMP) platforms. Our expentaevere run on a Sun
Fire X4600 Server with 8 dual AMD Opteron CPUs and 64GB of RAMe se-
quences were 71-253 nt long (see the supplementary mattiadequences) and the
running time ofbi RNA with full features was from about 10 minutes to slightly more



than one hour per sSRNA-mRNA pair. TheRNA software and webserver are available
athttp://conpbio. cs. sfu.caltavernal.

Pair Binding Site(s) bi RNA RNAup Ref.
Literature Site(s) —AG Site —-AG
GevB gltl [66,77] | [44,31] | (64,81) | (44,26) [11.5| (75,93) | (38,19) [18.7 |[39]
GcevB argT | [75,91] | [104,89]| (71,90) | (108,90)|13.1| (72,91) | (107,89)20.2 |[39]
GevB dppA | [65,90] |[150,133] (62,81) |(153,135)14.7 | (62,81) |(153,135)23.5 |[39]
GevB livd [63,87] | [82,59] | (66,84) | (73,54) (13.1| (71,90) | (67,49) [14.9[39]
GevB livk [68,77] |[177,165] (67,86) |(175,156)12.2| (67,86) |(175,157)19.0 |[39]
GcevB oppA | [65,90] ([179,155] (67,86) |(176,158) 9.3 | (67,86) |(176,158)15.3 |[39]
GevB  |STM4351 [70,79] | [52,44] | (69,77) | (52,44) | 9.6 | (69,87) | (52,33) |17.7 |[39]
MicA lamB [8,36] |[148,122] (8,26) |(148,131) 6.1 | (8,27) |(148,129)12.9 | [5]
MicA | ompA | [8,24] [[128,113] (8,24) [(128,113)14.0| (8,24) [(128,113)19.4([34]
DsrA rpoS [8,36] | [38,10] | (21,40) | (25,7) | 9.4| (13,32) | (33,14) |16.3|[36]
RprA rpoS | [33,62] | [39,16] | (40,51) | (32,22) | 4.3| (33,51) | (39,22) |10.7 |[23]
IstR tisA [65,87] | [79,57] | (66,85) | (78,59) |18.1| (66,85) | (78,59) |29.0 |[44]
MicC ompC | [1,30] |[139,93]| (1,16) |(119,104)18.5| (1,16) ((119,104)18.7|[8]
MicF ompF | [1,33] |[125,100] (14,30) | (118,99) 8.0| (17,33)((116,100)14.7 |[38]
RyhB sdhD | [9,50] |[128,89]| (22,41) |(116,98)/15.8| (22,41) | (116,98)|21.5 |[25]
RyhB sodB | [38,46] | [60,52] | (38,46) | (64,48)| 9.7 | (38,57) | (60,45) [10.3|[15]
SgrS ptsG |[157,187] [107,76]|(174,187) (89,76) |14.5((168,187) (95,76) [22.9|[19]
Spot42 | galK [1,61] [[126,52]| (1,8) [(128,119)20.5| (27,46) | (84,68) [14.6 |[29]
(25,37) | (86,73)
(46,60) | (64,53)

INcRNAs4| repZ | [16,42] | [54,28] | (19,38) | (51,32) [35.3| (19,38) | (51,32) [37.5]|[4]
OxyS fhlA [22,30] | [95,87] | (23,30) | (94,87)| 7.9 - - 10.3|[3]

[98,104]| [45,39] | (96,104) (48,39) (96,104)| (48,39)
CopA CopT | [22,33] | [70,59] | (22,31)| (70,61) |25.9 - - 23.9[20]

[48,56] | [44,36] | (49,57) | (43,35) (49,67) | (43,24)

[62,67] | [29,24] | (58,67) | (33,24) - -

Table 1. Binding sites reported in the literature and predictediofNA andRNAup with window
sizew = 20.AG is in kcal/m. Two RNAs interact in opposite direction, hence, sites in the siecon
RNA are presented in reverse order. See the supplementary materis¢sjfiences.

5 Conclusions and Future Work

In this paper, we presentdd RNA, a new thermodynamic framework for prediction of
binding sites between two RNAs based on minimization of inigdree energy. Similar
to RNAup approach, we assume the binding free energy is the sum oh#rgyeneeded
to unpair all the binding sites and the interaction free gyneeleased as a result of

binding.

Our algorithm is able to predict multiple binding sites whis an important advan-
tage over previous approaches. More importantly, our @lgarcan handle crossing
interactions as well as zigzags (hairpins interacting ilgaag fashion, see [1]). To as-
sess the performance bif RNA, we compared its predictions with those RMAup for
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21 bacterial SRNA-mRNA pairs studied in the literature. Thsults are presented in
Table 1. As it was expectetlj RNA outperformsRNAup for those RNA pairs that have
multiple binding sites such as OxyS-fhlA and CopA-CopT. Bmrer,bi RNA performs
slightly better thaRNAup for those pairs that have only one binding site becau&hlA
accounts for intramolecular as well as intermolecular Ipaseng in the binding sites.

To deal with simultaneous accessibility of binding sitag, agorithm models their
joint probability of being unpaired. Since computing theexjoint probability dis-
tribution is intractable, we approximate the joint probipiby a polynomially rep-
resentable graphical model namely a tree-structured MarRandom Field computed
by the Chow-Liu algorithm [10]. Calculating a joint probhtyi in the Chow-Liu tree
is performed by efficient marginalization algorithms [3Ekentually, two Chow-Liu
trees, pertaining to the two input RNAs, are matched to filedhtimimum binding free
energy matching. To the best of our knowledge, the complefitminimum weight
Chow-Liu trees matching problem is currently unknown. We&orking on the prob-
lem, and we hope to either prove its hardness or give a poligia@igorithm. In this
paper, we implemented an exhaustive search on the set @lleltitons of single, pair,
and triple sites.

Our proposed Bayesian approximation of the Boltzmann jpiobability distri-
bution provides a novel, powerful framework which can alsoutilized in individual
and joint RNA secondary structure prediction algorithms. gkaphical models allow
for models with increasing complexity, our proposed Bagesramework may inspire
more accurate but tractable RNA-RNA interaction preditatgorithms in future work.
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