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Abstract. We presentbiRNA, a novel algorithm for prediction of binding sites
between two RNAs based on minimization of binding free energy. Similar to
RNAup approach [30], we assume the binding free energy is the sum of accessi-
bility and the interaction free energies. Our algorithm maintains tractability and
speed and also has two important advantages over previous similar approaches:
(1) biRNA is able to predict multiple simultaneous binding sites and (2) it com-
putes a more accurate interaction free energy by considering both intramolecular
and intermolecular base pairing. Moreover,biRNA can handle crossing interac-
tions as well as hairpins interacting in a zigzag fashion. To deal with simultaneous
accessibility of binding sites, our algorithm models their joint probability of being
unpaired. Since computing the exact joint probability distribution is intractable,
we approximate the joint probability by a polynomially representable graphical
model namely a Chow-Liu tree-structured Markov Random Field. Experimental
results show thatbiRNA outperformsRNAup and also support the accuracy of our
approach. Our proposed Bayesian approximation of the Boltzmann jointproba-
bility distribution provides a powerful, novel framework that can also be utilized
in other applications.

1 Introduction

Following the recent discovery of RNA interference (RNAi),the post transcriptional si-
lencing of gene expression via interactions between mRNAs and their regulatory RNAs,
RNA-RNA interaction has moved from a side topic to a central research topic. Recent
studies have shown that a large fraction of the genome gives rise to RNA transcripts
that do not code for proteins [40]. Several of these non-coding RNAs (ncRNAs) reg-
ulate gene expression post-transcriptionally through base pairing (and establishing a
joint structure) with a target mRNA, as per the eukaryotic miRNAs and small interfer-
ing RNAs (siRNAs), antisense RNAs or bacterial small regulatory RNAs (sRNAs) [16].
In addition to such endogenous regulatory ncRNAs, antisense oligonucleotides have
been used as exogenous inhibitors of gene expression; antisense technology is now
commonly used as a research tool as well as for therapeutic purposes. Furthermore,
synthetic nucleic acids systems have been engineered to self assemble into complex
structures performing various dynamic mechanical motions.
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A key tool for all the above advances is a fast and accurate computational method
for predicting RNA-RNA interactions. Existing comprehensive methods for analyz-
ing binding thermodynamics of nucleic acids are computationally expensive and pro-
hibitively slow for real applications [1, 9]. Other existing methods suffer from a low
specificity, possibly because several of these methods consider restricted versions of
the problem (e.g. simplified energy functions or restrictedtypes of interactions) - this is
mostly for computational reasons. In this paper we present an algorithm to predict the
binding sites of two interacting RNA strands. Our most important goal in this work is
tractability as well as high specificity. While our algorithmconsiders the most general
type of interactions, it is still practically tractable by making simplifying assumptions
on the energy function. These assumptions are however natural and adopted by many
other groups as well [6, 22, 30, 41].

Our contribution

We give an algorithm to predict the binding sites of two interacting RNAs and also the
interaction secondary structure constrained by the predicted binding sites. As opposed
to previous approaches that are able to predict only one binding site [6, 30, 42], our al-
gorithm predicts multiple simultaneous binding sites. We define a binding site to be a
subsequence which interacts with exactly one binding site in the other strand. Crossing
interactions (external pseudoknots) and zigzags (see [1] for exact definition) are par-
ticularly allowed. To the best of our knowledge, this allowsfor the most general type
of interactions considered in the literature. Although intramolecular pseudoknots are
not considered in the current work, they can be incorporatedinto our framework at the
expense of additional computational complexity.

Following theRNAup approach [30], we assume the total interaction free energy is
the sum of two terms: (1) the free energy needed to make binding sites accessible in each
molecule and (2) the free energy released as a result of intermolecular bonds formed
between the interacting binding site pairs. Based on that energy model, our algorithm is
essentially composed of three consecutive steps: (1) building a tree-structured Markov
Random Field (MRF) to approximate accessibility of a collection of potential binding
sites, (2) computing pairwise interaction free energies for potential binding sites of
one strand against those of the other strand, and (3) finding aminimum free energy
matching of binding sites. UnlikeRNAup that computes only the hybridization partition
function for step (2), our algorithm computes the full interaction partition function [9].
Therefore, our algorithm not only considers multiple simultaneous binding sites but
also computes a more accurate free energy of binding.

The time complexity of the first two steps isO(n3r + m3s + nmw4) in which n and
m denote the lengths of sequences,w denotes maximum binding site length, andr ≤ nw
ands ≤ mw are the number of potential sites heuristically selected out of theO(nw) and
O(mw) possible ones. More importantly, the space complexity of the first two steps is
O(r2 + s2 +nmw2). The third step requires a nontrivial optimization namely minimum
energy bipartite matching of two tree-structured Markov Random Fields, a topic on
which we are currently working. In this paper, we implement an exhaustive search for
the third step. Therefore, the running time of the third stepis currentlyO(rκsκ) where
κ is the maximum number of simultaneous binding sites.
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Related work

Since the initial works of Tinoco et al. [43], Nussinov et al.[31], and Waterman and
Smith [46] several computational methods have emerged to study the secondary struc-
ture thermodynamics of a single nucleic acid molecule. Those initial works laid the
foundation of modern computational methods by adopting a divide and conquer strat-
egy. That view, which originally exhibited itself in the form of a simple base pair count-
ing energy function, has evolved into Nearest Neighbor Thermodynamic model which
has become the standard energy model for a nucleic acid secondary structure [26]. The
standard energy model is based on the assumption that stacking base pairs and loop
entropies contribute additively to the free energy of a nucleic acid secondary structure.
Based on additivity of the energy, efficient dynamic programming algorithms for pre-
dicting the minimum free energy secondary structure [31, 37, 46, 47] and computing the
partition function of a single strand [14, 27] have been developed.

Some previous attempts to analyze the thermodynamics of multiple interacting nu-
cleic acids concatenate input sequences in some order and consider them as a single
strand. For example,pairfold [2] andRNAcofold from Vienna package concatenate
the two input sequences into a single strand and predict its minimum free energy struc-
ture. Dirks et al. present a method, as a part ofNUPack, that concatenates the input
sequences in some order, carefully considering symmetry and sequence multiplicities,
and computes the partition function for the whole ensemble of complex species [13].
However, concatenating the sequences is not accurate at allas even if pseudoknots are
considered, some useful interactions are excluded while many physically impossible
interactions are included. Several other methods, such asRNAhybrid [35], UNAFold
[12, 24], andRNAduplex from Vienna package avoid intramolecular base-pairing in ei-
ther strand and compute minimum free energy hybridization secondary structure. Those
approaches naturally work only for simple cases involving typically very short strands.

Alternatively, a number of studies aimed to take a more fundamental stance and
compute the minimum free energy structure of two interacting strands under energy
models with growing complexity. For instance, Pervouchinedevised a dynamic pro-
gramming algorithm to maximize the number of base pairs among interacting strands
[33]. A followup work by Kato et al. proposed a grammar based approach to RNA-
RNA interaction prediction [18]. An approximation algorithm for RNA-RNA interac-
tion prediction is given by Mneimneh [28]. More generally, Alkan et al. [1] studied the
joint secondary structure prediction problem under three different models: (1) base pair
counting, (2) stacked pair energy model, and (3) loop energymodel. Alkan et al. proved
that the general RNA-RNA interaction prediction under all three energy models is an
NP-hard problem. Therefore, they suggested some natural constraints on the topology
of possible joint secondary structures, which are satisfiedby all examples of complex
RNA-RNA interactions in the literature. The resulting algorithm computes the mini-
mum free energy secondary structure among all possible joint secondary structures that
do not contain (internal) pseudoknots, crossing interactions (i.e. external pseudoknots),
andzigzags (see [1] for the exact definition). In our previous work [9], we gave an al-
gorithmpiRNA to compute the partition function, base pair probabilities, and minimum
free energy structure over the type of interactions that Alkan et al. considered. We ex-
tended the standard energy model for a single RNA to an energymodel for the joint
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secondary structure of interacting strands by consideringnew types of (joint) structural
components. AlthoughpiRNA outperforms existing alternatives, itsO(n4m2 + n2m4)
time andO(n2m2) space complexity make it prohibitive for many practical, particularly
high-throughput, applications.

A third set of methods predict the secondary structure of each individual RNA inde-
pendently, and predict the (most likely) hybridization between accessible regions of the
two molecules. More sophisticated methods in this categoryview interaction as a multi
step process [6, 30, 45]: (1) unfolding of the two molecules to expose bases needed for
hybridization, (2) the hybridization at the binding site, and (3) restructuring of the com-
plex to a new minimum free energy conformation. Some approaches in this set, such as
IntaRNA [6] andRNAup [30], assume that binding happens at only one location, which is
not the case for some known interacting RNAs such as OxyS-fhlA [3] and CopA-CopT
[20, 21]. Those programs are able to predict only one bindingsite, so in this paper, we
consider multiple simultaneous binding sites.

2 Preliminaries

Our algorithm is based on the assumption that binding is practically a stepwise process,
a view that has been proposed by others as well [1, 6, 22, 30, 41]. In real world, each
nucleic acid molecule has a secondary structure before taking part in any interaction. To
form an interaction, as the first step the individual secondary structures are deformed so
that the binding sites in both molecules become unpaired. Asthe second step, pairwise
matching between the binding sites takes place. Each step isassociated with an energy
the sum of which gives the free energy of binding∆G. Specifically, denote the energy
difference that is needed for unpairingall the binding sites in R andS by EDR

u andEDS
u

respectively, and denote by∆GRS
b the free energy that is released as a result of binding.

Similar to [30],
∆G = EDR

u +EDS
u +∆GRS

b . (1)

This assumption is intuitively plausible because each molecule needs to expose
its interacting parts before the actual binding happens; moreover, these two steps are
assumed to be independent from one another. Note that previous approaches such as
IntaRNA [6], RNAup [30], andRNAplex [42] consider only one binding site in each
molecule, which makes the problem easier, whereas we consider multiple binding sites.
It is sometimes argued that nature does not usually favor toohighly entangled structures
[30]. Our algorithm easily accommodates an upper bound on the number of potential
binding sites, which is another advantage of our approach.

To reduce the complexity, we assume that the length of a potential binding site is
not more than a window sizew in this work. This is a reasonable assumption, which
has also been made in similar approaches [30], as most known RNA-RNA interactions
such as OxyS-fhlA and CopA-CopT do not exhibit lengthy binding sites [3, 20, 21]. We
call a subsequence of length not more thanw a site.

3 Algorithm

Based on the assumption above, our programbiRNA finds a combination of binding
sites that minimizes∆G. LetV R andV S denote the set of potential binding sites, which
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is the collection of subsequences of length not more thanw in our case, ofR andS
respectively.biRNA is composed of five consecutive steps:

(I) For every siteW = [i, j] in V R or V S, compute the probabilityPR
u (W ) or PS

u (W )
thatW is unpaired.

(II) For every pair of sitesW1 andW2, compute the joint probabilitiesPR
u (W1,W2) and

PS
u (W1,W2) thatW1 andW2 are simultaneously unpaired.

(III) Build tree-structured Markov Random Fields (MRF)T R = (V R
,ER) andT S =

(V S
,ES) to approximate the joint probability distribution of multiple unpaired

sites. Denote theT -approximated joint probability of unpaired sitesW1,W2, . . . ,Wk

by P∗
u (W1,W2, . . . ,Wk).

(IV) ComputeQI
W RW S , the interaction partition function restricted to subsequencesW R

andW S, for everyW R ∈ V R andW S ∈ V S.
(V) Find a non-overlapping matchingM = {(W R

1 ,W S
1 ),(W R

2 ,W S
2 ), . . . ,(W R

k ,W S
k )} that

minimizes∆G(M) = EDR
u (M)+EDS

u(M)+∆GRS
b (M), in which

EDR
u (M) = −RT logPR∗

u (W R
1 ,W R

2 , . . . ,W R
k ) (2)

EDS
u(M) = −RT logPS∗

u (W S
1 ,W S

2 , . . . ,W S
k ) (3)

∆GRS
b (M) = −RT ∑

1≤i≤k

log(QI
W R

i W S
i
−QW R

i
QW S

i
). (4)

Above,R is the universal gas constant andT is temperature. To demonstrate (2) and (3),
let for instancePR

u (W R
1 ,W R

2 , . . . ,W R
k ) be the exact probability that the sites are unpaired.

In that case,EDR
u (W R

1 ,W R
2 , . . . ,W R

k ) = ∆GR(W R
1 ,W R

2 , . . . ,W R
k )−∆GR, and

∆GR(W R
1 ,W R

2 , . . . ,W R
k )−∆GR = −RT logQR(W R

1 ,W R
2 , . . . ,W R

k )+RT logQR

= −RT log
QR(W R

1 ,W R
2 , . . . ,W R

k )

QR
= −RT logPR

u (W R
1 ,W R

2 , . . . ,W R
k ),

(5)

in which QR is the partition function ofR and QR(W R
1 ,W R

2 , . . . ,W R
k ) is the partition

function of those structures in whichW R
1 ,W R

2 , . . . ,W R
k are unpaired.

In the following, we describe each step in more details. In Section 3.1 we explain
(I) and (II) above. Section 3.2 is dedicated to (III) and alsoinference in tree-structured
Markov Random Fields namely computingP∗

u . In Section 3.3 we describe (IV). Finally,
(V) is presented in Section 3.4.

3.1 Accessibility of Site Pairs

As part ofRNAup, Mückstein et al. present an efficient algorithm for computingthe
probability of an unpaired subsequence [30]. Their algorithm computes the probability
of being unpaired for all subsequences inO(n3) time in whichn is the sequence length.
Based onRNAup algorithm, we present anO(n4w) time andO(n2) space complexity
algorithm to compute the joint probabilities of all unpaired site pairs. For every site, our
algorithm uses constrained McCaskill’s [27] and constrainedRNAup algorithm to com-
pute the conditional probabilities of all other unpaired subsequences. There areO(nw)
sites for each of which the algorithm takesO(n3) time. For triple joint probabilities, the
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same method is applicable but the running time will be multiplied by another factor of
O(nw). Therefore, we only compute pairwise probabilities and approximate the whole
joint probability distribution by graphical models.

3.2 Simultaneous Accessibility of Multiple Sites

To deal with simultaneous accessibility of binding sites, we must model their joint prob-
ability of being unpaired. One way is to compute the exact joint probability distribution
by using constrained McCaskill’s algorithm [22]. For everycollection of sites, the algo-
rithm has polynomial time complexity, however, since thereare exponential number of
different collections, this naı̈ve approach is intractable. In this paper, we approximate
the joint probability by a polynomially representable graphical model namely a Markov
Random Field. Graphical models, including Bayesian Networks and Markov Random
Fields, are powerful tools for approximating joint probabilities. They generally have
enough expressive power, which intuitively explains why the inference problem for
general graphical models is NP-hard [11]. Fortunately, there is an efficient inference al-
gorithm for tree-structured models [32]. In this work, we build a Chow-Liu tree, which
is a tree-structured Markov Random Field, to approximate the exact joint probability
distribution [10].

To describe the Chow-Liu algorithm, letG be the complete weighted graph onV ,
the set of potential binding sites, in which the weight of an edge betweenW1 andW2 is
I(W1,W2), the mutual information given by

I(W1,W2) = ∑
x1∈{W1,∼W1}
x2∈{W2,∼W2}

P(x1,x2) log

(

P(x1,x2)

P(x1)P(x2)

)

. (6)

Above,P(W1,∼ W2) is for instance the joint probability thatW1 is unpaired andW2 is
not unpaired. In Section 3.1, we explained how to compute thejoint probabilities of
all site pairs. The following equations calculate all the necessary terms fromP(W1,W2):
P(W1,∼W2)= P(W1)−P(W1,W2), P(∼W1,W2)= P(W2)−P(W1,W2), P(∼W1,∼W2)=
1−P(W1)−P(W2)+ P(W1,W2). The Chow-Liu treeT is the best tree-structured ap-
proximation for a joint probability distribution, in the sense thatT has the maximum
mutual information with the joint probability distribution [10]. Chow and Liu proved
that T is the maximum spanning tree ofG . To computeT , we use a standard max-
imum spanning tree algorithm such as Chazelle’s algorithm [7]. We refer the reader
to [17] or [32] for a detailed description of inference algorithm in T . In summary,
P∗

u (W1,W2, . . . ,Wk) is computed by marginalizing overV \{W1,W2, . . . ,Wk} the joint
probability distribution defined byT . Inference inT can be done inO(|V |) time [17].

3.3 Free Energy of Interaction

The local free energy of interaction for a pair of sitesW R andW S is−RT log(QI
W RW S −

QW R QW S) in which QI is the interaction partition function restricted toW R andW S

[9] and Q is McCaskill’s partition function restricted toW . Note that a simple ver-
sion of QI would calculate only the hybridization partition functionbetweenW R and
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W S (see [30]); however, this would exclude any intramolecularstructure in the bind-
ing sites. For that reason, we use our approach forQI which considers intermolecular
as well as intramolecular structures. Our modified algorithm is the dynamic program-
ming in [9] that starts withlR = 1, lS = 1 and incrementally computes all the recur-
sive quantities up tolR = w, lS = w. Therefore, the windowed version of our interac-
tion partition function algorithm hasO(nmw4) time andO(nmw2) space complexity, in
which n andm are the lengths ofR andS respectively. Finally, for a non-overlapping
matchingM = {(W R

1 ,W S
1 ),(W R

2 ,W S
2 ), . . . ,(W R

k ,W S
k )} the free energy of interaction is

∆GRS
b (M) =−RT ∑1≤i≤k log(QI

W R
i W S

i
−QW R

i
QW S

i
), whereQI

W R
i W S

i
−QW R

i
QW S

i
is the par-

tition function for those structures that constitute at least one intermolecular bond. Note
that this is based on the simplifying assumption in Section 3.

3.4 Binding Sites Matching

Having built the machinery to compute∆G for a matching of binding sites, we would
like to find a matching that minimizes∆G. To clarify the importance and difficulty of
the problem, suppose the binding sites were independent so thatPu(W1,W2, . . . ,Wk) =
Pu(W1)Pu(W2) · · ·Pu(Wk). In that case, the problem would reduce to finding a minimum
weight bipartite matching with weight(W R

i ,W S
j ) = −RT log[PR

u (W R
i )PS

u (W S
j )(QI

W R
i W S

j
−

QW R
i

QW S
j
)]. There are efficient algorithms for minimum weight bipartitematching, but

the issue is that the independence assumption is too crude ofan approximation. There-
fore, we propose the following problem, which has not been solved to our knowledge:

Minimum Weight Chow-Liu Trees Matching Problem

Given a pair of Chow-Liu treesT R = (V R
,ER) andT S = (V S

,ES), compute a non-
perfect matchingM between the nodes ofT R andT S that minimizes∆G(M).
Input: Chow-Liu treesT R andT S.
Output: A matchingM = {(W R

1 ,W S
1 ),(W R

2 ,W S
2 ), . . . ,(W R

k ,W S
k )} ⊂ V R ×V S.

The complexity of minimum weight Chow-Liu trees matching problem is currently
unknown. We are working on the problem, and we hope to either prove its hardness or
to give a polynomial algorithm; we incline toward the latter. In this paper, we implement
an exhaustive search on single, pair, and triple sites.

3.5 Complexity Analysis

Let n denote the length ofR, m denote the length ofS, and w denote the window
length. Step (I) of the algorithm takesO(n3 + m3) time andO(n2 + m2) space. If we
consider all site pairs, then (II) takesO(n4w + m4w) time andO(n2w2 + m2w2) space
to store the joint probabilities. It is often reasonable to filter potential binding sites, for
example based on the probability of being unpaired or the interaction partition func-
tion with another site in the other molecule. Supposer potential sites out ofnw possi-
ble ones ands sites out ofmw ones are selected. In that case, (II) takesO(n3r + m3s)
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time andO(r2 + s2) space. Step (III) takesO(r2α(r2
,r)+ s2α(s2

,s)) time whereα is
the classical functional inverse of the Ackermann function[7]. The functionα grows
extremely slowly, so that for all practical purposes it may be considered a constant.
Step (IV) takesO(nmw4) time andO(nmw2) space. In this paper, we implement an
exhaustive search for (V). Therefore, its running time is currently O(rκsκ) whereκ is
the maximum number of simultaneous binding sites. Therefore, the algorithm takes
O(n3r +m3s +nmw4 + rκsκ) time andO(r2 + s2 +nmw2) space. Note thatr ≤ nw and
s ≤ mw, so that the algorithm hasO(n4w+m4w+n2m2w4) time andO(n2w2 +m2w2)
space complexity without heuristic filtering, consideringmaximum two simultaneous
binding sites. We are working on (V) and hope to either find an efficient algorithm or to
prove the problem’s hardness.

3.6 Interaction Structure Prediction

Once the binding sites are predicted, a constrained minimumfree energy structure pre-
diction algorithm predicts the secondary structure of eachRNA. For each binding site
pair, a modified version of our partition function algorithmin [9] yields the interac-
tion structure. Our partition function algorithm is modified for structure prediction by
replacing summation with minimization, multiplication with summation, and exponen-
tiation with the identity function.

4 Results

To evaluate the performance ofbiRNA, we used the program to predict the binding
site(s) of 21 bacterial sRNA-mRNA interactions studied in the literature. Since all these
sRNAs bind their target in close proximity to the ribosome binding site at the Shine-
Dalgarno (SD) sequence, we restricted the program to a window of maximum 250 bases
around the start codon of the gene. We compared our results with those obtained by
RNAup on the same sequences with the same window sizew = 20. The results are sum-
marized in Table 1.RNAup andbiRNA have generally very close performance for the
cases with one binding site. However,biRNA outperformsRNAup in some single bind-
ing site cases such as GcvB-gltI. That is becausebiRNA uses the interaction partition
function as opposed to the hybridization partition function used byRNAup. The interac-
tion partition function is more accurate than the hybridization partition function as the
interaction partition function accounts for both intermolecular and intramolecular base
pairing [9]. Also,biRNA significantly outperformsRNAup for OxyS-fhlA and CopA-
CopT which constitute more than one binding site. We noticedthat our predicted ener-
gies are generally lower than those predicted byRNAup which may be due to different
energy parameters. We used ourpiRNA energy parameters [9] which in turn are based
onUNAFold v3.6 parameters [24].

We implementedbiRNA in C++ and used OpenMP to parallelize it on Shared-
Memory multiProcessor/core (SMP) platforms. Our experiments were run on a Sun
Fire X4600 Server with 8 dual AMD Opteron CPUs and 64GB of RAM.The se-
quences were 71-253 nt long (see the supplementary materials for sequences) and the
running time ofbiRNA with full features was from about 10 minutes to slightly more
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than one hour per sRNA-mRNA pair. ThebiRNA software and webserver are available
athttp://compbio.cs.sfu.ca/taverna/.

Pair Binding Site(s) biRNA RNAup Ref.
Literature Site(s) −∆G Site −∆G

GcvB gltI [66,77] [44,31] (64,81) (44,26) 11.5 (75,93) (38,19) 18.7 [39]
GcvB argT [75,91] [104,89] (71,90) (108,90) 13.1 (72,91) (107,89) 20.2 [39]
GcvB dppA [65,90] [150,133] (62,81) (153,135)14.7 (62,81) (153,135)23.5 [39]
GcvB livJ [63,87] [82,59] (66,84) (73,54) 13.1 (71,90) (67,49) 14.9 [39]
GcvB livK [68,77] [177,165] (67,86) (175,156)12.2 (67,86) (175,157)19.0 [39]
GcvB oppA [65,90] [179,155] (67,86) (176,158) 9.3 (67,86) (176,158)15.3 [39]
GcvB STM4351 [70,79] [52,44] (69,77) (52,44) 9.6 (69,87) (52,33) 17.7 [39]
MicA lamB [8,36] [148,122] (8,26) (148,131) 6.1 (8,27) (148,129)12.9 [5]
MicA ompA [8,24] [128,113] (8,24) (128,113)14.0 (8,24) (128,113)19.4 [34]
DsrA rpoS [8,36] [38,10] (21,40) (25,7) 9.4 (13,32) (33,14) 16.3 [36]
RprA rpoS [33,62] [39,16] (40,51) (32,22) 4.3 (33,51) (39,22) 10.7 [23]
IstR tisA [65,87] [79,57] (66,85) (78,59) 18.1 (66,85) (78,59) 29.0 [44]

MicC ompC [1,30] [139,93] (1,16) (119,104)18.5 (1,16) (119,104)18.7 [8]
MicF ompF [1,33] [125,100] (14,30) (118,99) 8.0 (17,33) (116,100)14.7 [38]
RyhB sdhD [9,50] [128,89] (22,41) (116,98) 15.8 (22,41) (116,98) 21.5 [25]
RyhB sodB [38,46] [60,52] (38,46) (64,48) 9.7 (38,57) (60,45) 10.3 [15]
SgrS ptsG [157,187] [107,76] (174,187) (89,76) 14.5 (168,187) (95,76) 22.9 [19]

Spot42 galK [1,61] [126,52] (1,8) (128,119)20.5 (27,46) (84,68) 14.6 [29]
(25,37) (86,73)
(46,60) (64,53)

IncRNA54 repZ [16,42] [54,28] (19,38) (51,32) 35.3 (19,38) (51,32) 37.5 [4]
OxyS fhlA [22,30] [95,87] (23,30) (94,87) 7.9 - - 10.3 [3]

[98,104] [45,39] (96,104) (48,39) (96,104) (48,39)
CopA CopT [22,33] [70,59] (22,31) (70,61) 25.9 - - 23.9 [20]

[48,56] [44,36] (49,57) (43,35) (49,67) (43,24)
[62,67] [29,24] (58,67) (33,24) - -

Table 1. Binding sites reported in the literature and predicted bybiRNA andRNAup with window
sizew = 20.∆G is in kcal/m. Two RNAs interact in opposite direction, hence, sites in the second
RNA are presented in reverse order. See the supplementary materials for sequences.

5 Conclusions and Future Work

In this paper, we presentedbiRNA, a new thermodynamic framework for prediction of
binding sites between two RNAs based on minimization of binding free energy. Similar
to RNAup approach, we assume the binding free energy is the sum of the energy needed
to unpair all the binding sites and the interaction free energy released as a result of
binding.

Our algorithm is able to predict multiple binding sites which is an important advan-
tage over previous approaches. More importantly, our algorithm can handle crossing
interactions as well as zigzags (hairpins interacting in a zigzag fashion, see [1]). To as-
sess the performance ofbiRNA, we compared its predictions with those ofRNAup for
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21 bacterial sRNA-mRNA pairs studied in the literature. Theresults are presented in
Table 1. As it was expected,biRNA outperformsRNAup for those RNA pairs that have
multiple binding sites such as OxyS-fhlA and CopA-CopT. Moreover,biRNA performs
slightly better thanRNAup for those pairs that have only one binding site becausebiRNA
accounts for intramolecular as well as intermolecular basepairing in the binding sites.

To deal with simultaneous accessibility of binding sites, our algorithm models their
joint probability of being unpaired. Since computing the exact joint probability dis-
tribution is intractable, we approximate the joint probability by a polynomially rep-
resentable graphical model namely a tree-structured Markov Random Field computed
by the Chow-Liu algorithm [10]. Calculating a joint probability in the Chow-Liu tree
is performed by efficient marginalization algorithms [32].Eventually, two Chow-Liu
trees, pertaining to the two input RNAs, are matched to find the minimum binding free
energy matching. To the best of our knowledge, the complexity of minimum weight
Chow-Liu trees matching problem is currently unknown. We are working on the prob-
lem, and we hope to either prove its hardness or give a polynomial algorithm. In this
paper, we implemented an exhaustive search on the set of all collections of single, pair,
and triple sites.

Our proposed Bayesian approximation of the Boltzmann jointprobability distri-
bution provides a novel, powerful framework which can also be utilized in individual
and joint RNA secondary structure prediction algorithms. As graphical models allow
for models with increasing complexity, our proposed Bayesian framework may inspire
more accurate but tractable RNA-RNA interaction prediction algorithms in future work.
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Robert F. Murphy, Kristan Schneider, and Cristian Toma, editors,BIRD, volume 13 ofCom-
munications in Computer and Information Science, pages 114–127. Springer, 2008.

31. R. Nussinov, G. Piecznik, J. R. Grigg, and D. J. Kleitman. Algorithmsfor loop matchings.
SIAM Journal on Applied Mathematics, 35:68–82, 1978.

32. Judea Pearl.Probabilistic Reasoning in Intelligent Systems : Networks of Plausible Infer-
ence. Morgan Kaufmann, September 1988.

33. D.D. Pervouchine. IRIS: intermolecular RNA interaction search.Genome Inform, 15:92–
101, 2004.

34. A. A. Rasmussen, M. Eriksen, K. Gilany, C. Udesen, T. Franch,C. Petersen, and P. Valentin-
Hansen. Regulation of ompA mRNA stability: the role of a small regulatory RNA in growth
phase-dependent control.Mol. Microbiol., 58:1421–1429, Dec 2005.

35. M. Rehmsmeier, P. Steffen, M. Hochsmann, and R. Giegerich. Fast and effective prediction
of microRNA/target duplexes.RNA, 10:1507–1517, Oct 2004.

36. F. Repoila, N. Majdalani, and S. Gottesman. Small non-coding RNAs,co-ordinators of
adaptation processes in Escherichia coli: the RpoS paradigm.Mol. Microbiol., 48:855–861,
May 2003.

37. E. Rivas and S.R. Eddy. A dynamic programming algorithm for RNAstructure prediction
including pseudoknots.J. Mol. Biol., 285:2053–2068, Feb 1999.

38. M. Schmidt, P. Zheng, and N. Delihas. Secondary structures of Escherichia coli antisense
micF RNA, the 5’-end of the target ompF mRNA, and the RNA/RNA duplex.Biochemistry,
34:3621–3631, Mar 1995.

39. C. M. Sharma, F. Darfeuille, T. H. Plantinga, and J. Vogel. A small RNA regulates multiple
ABC transporter mRNAs by targeting C/A-rich elements inside and upstreamof ribosome-
binding sites.Genes Dev., 21:2804–2817, Nov 2007.

40. Gisela Storz. An expanding universe of noncoding RNAs.Science, 296(5571):1260–3, 2002.
41. H. Tafer, S. L. Ameres, G. Obernosterer, C. A. Gebeshuber,R. Schroeder, J. Martinez, and

I. L. Hofacker. The impact of target site accessibility on the design of effective siRNAs.Nat.
Biotechnol., 26:578–583, May 2008.

42. Hakim Tafer and Ivo L. Hofacker. RNAplex: a fast tool for RNA-RNA interaction search.
Bioinformatics, 24(22):2657–2663, 2008.

43. I. Tinoco, O. C. Uhlenbeck, and M. D. Levine. Estimation of secondary structure in ribonu-
cleic acids.Nature, 230:362–367, Apr 1971.

44. J. Vogel, L. Argaman, E. G. Wagner, and S. Altuvia. The small RNAIstR inhibits synthesis
of an SOS-induced toxic peptide.Curr. Biol., 14:2271–2276, Dec 2004.

45. S.P. Walton, G.N. Stephanopoulos, M.L. Yarmush, and C.M. Roth. Thermodynamic and
kinetic characterization of antisense oligodeoxynucleotide binding to a structured mRNA.
Biophys. J., 82:366–377, Jan 2002.

46. M. S. Waterman and T. F. Smith. RNA secondary structure: A complete mathematical anal-
ysis. Math. Biosc, 42:257–266, 1978.

47. Michael Zuker and Patrick Stiegler. Optimal computer folding of largeRNA sequences using
thermodynamics and auxiliary information.Nucleic Acids Research, 9(1):133–148, 1981.


