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Well-Nested Drawings

as Models of Syntactic Structure
Manuel Bodirsky, Marco Kuhlmann and
Mathias Möhl

Abstract

This paper investigates drawings (totally ordered forests) as models of
syntactic structure. It offers a new model-based perspective on lexicalised
Tree Adjoining Grammar by characterising a class of drawings structurally
equivalent to tag derivations. The drawings in this class are distinguished
by a restricted form of non-projectivity (gap degree at most one) and the
absence of interleaving substructures (well-nestedness).

Keywords Model-theoretic syntax, Tree Adjoining Grammar

1.1 Introduction
There are two major approaches to formal accounts of the syntax of nat-
ural language, the proof-theoretic and the model-theoretic approach.
Both aim at providing frameworks for answering the question whether
a given natural language expression is grammatical. Their methodol-
ogy, however, is rather different: In a proof-theoretic framework, one
tries to set up a system of derivation rules (such as the rules in a
context-free grammar) so that each well-formed natural language ex-
pression stands in correspondence with a derivation in that system.
In contrast, in a model-theoretic framework, one attempts to specify
a class of models for natural language expressions and a set of con-
straints on these models such that an expression is well-formed iff it
has a model satisfying all the constraints. The main contribution of this
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paper is the characterisation of a class of structures that provides a new
model-based perspective on Tree Adjoining Grammar (tag; Joshi and
Schabes (1997)), a well-known proof-theoretic syntactic framework.

Every syntactic framework needs to account for at least two dimen-
sions of syntactic structure: derivation structure and word order. The
derivation structure captures linguistic notions such as dependency and
constituency—the idea that a natural language expression can be com-
posed of smaller expressions. Statements about word order are needed
to account for the fact that not all permutations of the words of a
grammatical sentence are neccessarily grammatical themselves.

One of the scales along which syntactic frameworks can vary is the
flexibility they permit in the relationship between derivation structure
and word order. Context-free grammars do not allow any flexibility at
all; derivation structure determines word order completely. In mildly
context-sensitive grammar formalisms like tag or Combinatory Catego-
rial Grammar (Steedman, 2001), certain forms of discontinuous deriva-
tions are permitted (“crossed-serial dependencies”). Other frameworks,
such as non-projective dependency grammar (Plátek et al., 2001), allow
for even more flexibility to account for languages with free word order.

In this paper we introduce drawings, a simple class of structures for
which the relaxation of the relationship between derivation structure
and word order can be easily measured (§ 1.2). There is a natural way
in which tag derivations can be understood as drawings (§ 1.3). We
show that the class of drawings induced in this way can be identified
by two structural properties: a restriction on the degree of word order
flexibility and a global property called well-nestedness, which disallows
interleaving subderivations. In combination, these two properties cap-
ture the “structural essence” of tag (§ 1.4). The paper concludes with
a discussion of the relevance of our results and an outlook on future
research (§ 1.5). For further details and full formal proofs, we refer to
the extended version of this paper (Bodirsky et al., 2005).

1.2 Drawings
We start by introducing some basic terminology.

1.2.1 Relational structures
A relational structure is a tuple whose first component is a non-empty,
finite set V of nodes, and whose remaining components are (in this
paper) binary relations on V . The notation Ru stands for the set of all
nodes v such that (u, v) ∈ R. We use the standard notations for the
transitive (R+) and reflexive transitive (R∗) closure of binary relations.

In this paper, we are concerned with two types of relational struc-
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FIGURE 1: Two drawings

tures in particular: forests and total orders. A relational structure (V ; /)
is called a forest iff / is acyclic and every node in V has at most one
predecessor with respect to /. Nodes in a forest with no /-predecessors
are called roots. A tree is a forest that has exactly one root. A total or-
der is a relational structure (V ;≺) in which ≺ is transitive and for all
v1, v2 ∈ V , exactly one of the following three conditions holds: v1 ≺ v2,
v1 = v2, or v2 ≺ v1. Given a total order, the interval between two
nodes v1 and v2 is the set of all v such that v1 � v � v2. The cover
(also known as convex hull) of a set V ′ ⊆ V , C(V ′), is the smallest
interval containing V ′. A set V ′ is convex iff it is equal to its cover. A
gap in a set V ′ is a maximal, non-empty interval in C(V ′)−V ′. We call
the number of gaps in a set the gap degree of that set and write Gk(V )
for the k-th gap in V (counted, say, from left to right).

1.2.2 Drawings and gaps
Drawings are relational structures with two binary relations: a forest
to model derivation structure, and a total order to model word order.

Definition 1 A drawing is a relational structure (V ; /,≺) where (V ; /)
forms a forest, and (V ;≺) forms a total order. Drawings whose under-
lying forest is a tree will be called T-drawings.

Note that, in contrast to ordered forests (where order is defined
on the direct successors of each node), order in drawings is total. By
identifying each node v in a drawing with the set (/∗)v of nodes in the
subtree rooted at v, we can lift the notions of cover and gap as follows:
C(v) := C((/∗)v), Gk(v) := Gk((/∗)v). The gap degree of a drawing is
the maximum among the gap degrees of its nodes.

Fig. 1 shows two drawings of the same underlying tree. The circles
and solid arcs reflect the forest structure. The dotted lines mark the po-
sitions of the nodes with respect to the total order. The labels attached
to the dotted lines give names to the nodes. Drawing 1a has gap degree
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→
π

τ₁

τ₂

(a) substitution

π

τ₁

τ₂

→

(b) adjunction

FIGURE 2: Combining tree structures in tag

zero, since C(v) = (/∗)v for all nodes v. In contrast, drawing 1b has
gap degree one, since the set {d, e} = {b, d, e, c} − {b, c} = C(b)− (/∗)b
is a gap for node b, and no other node has a gap.

1.2.3 Related work

Our terminology can be seen as a model-based reconstruction of the ter-
minology developed for non-projective dependency trees (Plátek et al.,
2001), where gaps are defined with respect to tree structures generated
by a grammar. The notion of gap degree is closely related to the notion
of fan-out in work on (string-based) finite copying parallel rewriting
systems (Rambow and Satta, 1999): fan-out measures the number of
substrings that a sub-derivation does contribute to the complete yield
of the derivation; dually, the gap degree measures the number of sub-
strings that a sub-derivation does not contribute.

1.3 Drawings for TAG
Tree Adjoining Grammar (tag) (Joshi and Schabes, 1997) is a proof-
theoretic syntactic framework whose derivations manipulate tree struc-
tures. This section gives a brief overview of the formalism and shows
how drawings model derivations in lexicalised tags.

1.3.1 Tree Adjoining Grammar

The building blocks of a tag grammar are called elementary trees; they
are successor-ordered trees in which each node has one of three types:
anchor (or terminal node), non-terminal node, or foot node. Anchors
and foot nodes must be leaves; non-terminal nodes may be either leaves
or inner nodes. Each elementary tree can have at most one foot node.
Elementary trees without a foot node are called initial trees; non-initial
trees are called auxiliary trees. A tag grammar is strictly lexicalised, if
each of its elementary trees contains exactly one anchor.
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Trees in tag can be combined using two operations (Fig. 2): Substi-
tution combines a tree structure τ1 with an initial tree τ2 by identifying
a non-terminal leaf node π of τ1 with the root node of τ2 (Fig. 2a). Ad-
junction identifies an inner node π of a structure τ1 with the root node
of an auxiliary tree τ2; the subtree of τ1 rooted at π is excised from τ1

and inserted below the foot node of τ2 (Fig. 2b; the star marks the foot
node). Combing operations are disallowed at root and foot nodes.

tag derivation trees record information about how tree structures
were combined during a derivation. Formally, they can be seen as un-
ordered trees whose nodes are labelled with elementary trees, and whose
edges are labelled with the nodes at which the combining operations
took place. If v is a node in a derivation tree, we write `(v) for the label
of v. An edge v1 −π→ v2 signifies that the elementary tree `(v2) was
substituted or adjoined into the tree `(v1) at node π.

tag derived trees represent results of derivations; we write drv(D) for
the derived tree corresponding to a derivation tree D. Derived trees are
ordered trees made up from the accumulated material of the elementary
trees participating in the derivation. In particular, each tag derivation
induces a mapping ρ that maps each node v in D to the root node of
`(v) in drv(D). In strictly lexicalised tags, a derivation also induces a
mapping α that maps each node v in D to the anchor of `(v) in drv(D).

For derivation trees D in strictly lexicalised tags, we define

derived(v) := {α(u) | v /∗ u in D } and
yield(v) := {π | π is an anchor and ρ(v) /∗ π in drv(D) } .

The set derived(v) contains those anchors in drv(D) that are contributed
by the partial derivation starting at `(v); yield(v) contains those anchors
that are dominated by the root node of `(v). To give a concrete example:
Fig. 3 shows a tag derivation tree (3a) and its corresponding derived
tree (3b). For this derivation, derived(like) = {what ,Dan, like} and
yield(like) = derived(like) ∪ {does}.

1.3.2 TAG drawings

There is a natural relation between strictly lexicalised tags and draw-
ings: given a tag derivation, one obtains a drawing by ordering the
nodes in the derivation tree according to the left-to-right order on their
corresponding anchors in the derived tree.

Definition 2 Let D be a derivation tree for a strictly lexicalised tag.
A drawing (V ; /,≺) is a tag-drawing iff (a) V is the set of nodes in D;
(b) v1 / v2 iff for some π, there is an edge v1 −π→ v2 in D; (c) v1 ≺ v2

iff α(v1) precedes α(v2) with respect to the leaf order in drv(D).
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FIGURE 3: tag derivation trees (a), derived trees (b), and drawings (c)

Fig. 3c shows the tag drawing induced by the derivation in Figs. 3a–b.

1.4 The structural essence of TAG
Now that we have defined how tag derivations induce drawings, we
can ask whether all drawings (whose underlying forests are trees) are
tag drawings. The answer to this question is “no”: tag drawings form
a proper subclass in the class of all drawings. As the major technical
result of this paper, we will characterise the class of tag drawings
by two structural properties: a restriction on the gap degree and a
property we call well-nestedness (Definition 3). The relevance of this
result is that it provides a characterisation of “tag-ness” that does not
make reference to any specific grammar, but refers to purely structural
properties: well-nested drawings with gap degree at most one are “just
the right” models for tag in the sense that every tag derivation induces
such a drawing, and for any such drawing we can construct a tag
grammar that allows for a derivation inducing that drawing.

1.4.1 TAG drawings are gap one
Gaps in tag drawings correspond to adjunctions in tag derivations:
each adjunction may introduce material into the yield of a node that
was not derived from that node. Since auxiliary trees have only one
foot node, tag drawings can have at most one gap.

Lemma 1 Let D be a tag derivation tree, and let v be a node in D.
Then (a) derived(v) ⊆ yield(v), (b) yield(v)− derived(v) is convex, and
(c) derived(v) contains at most one gap.

Corollary 2 tag drawings have gap degree at most one.
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a b c d e a b c d e

FIGURE 4: Two drawings that are not well-nested

1.4.2 TAG drawings are well-nested

The gap restriction alone is not sufficient to characterise tag drawings:
there are drawings with gap degree one that cannot be induced by a
tag. Fig. 4 shows two examples. To see why these drawings cannot be
induced by a tag notice that in both of them, the cover of two nodes
overlap (C(b) and C(c) in the left drawing, C(a) and C(e) in the right
one). Since each node in a drawing corresponds to a sub-derivation on
the tag side, this would require the overlap of two yields in the derived
tree, which is impossible. The present section will make this statement
precise.

Definition 3 Let T1 and T2 be disjoint subtrees in a drawing. We say
that T1 and T2 interleave iff there are nodes l1, r1 ∈ T1 and l2, r2 ∈ T2

such that l1 ≺ l2 ≺ r1 ≺ r2. A drawing is called well-nested iff it does
not contain any interleaving subtrees.

Well-nestedness is a purely structural property: it does not make
reference to any particular grammar at all. In this respect, it is similar
to the condition of planarity (Yli-Jyrä, 2003). In fact, one obtains pla-
narity instead of well-nestedness from Definition 3 if the disjointness
condition is relaxed such that T2 may also be a subtree of T1, and l1, r1

are chosen from T1 − T2.

Lemma 3 tag drawings are well-nested.

1.4.3 Constructing a TAG grammar for a drawing

To complete our characterisation of tag drawings, we now present an
algorithm that takes a well-nested drawing with gap degree at most
one and constructs a tag grammar whose only derivation induces the
original drawing. Correctness of the algorithm establishes the following

Lemma 4 Each well-nested T-drawing that has gap degree at most one
is a tag drawing.
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The algorithm (fully discussed in the extended version of this pa-
per) performs a pre-order traversal of the tree structure underlying the
drawing. For each node v, it constructs an elementary tree whose an-
chor is v and whose non-terminal nodes license exactly the combining
operations required by the outgoing edges of v. Children w of v that do
not have a gap induce sites for substitutions (non-terminal leaf nodes),
other children induce sites for adjunctions (non-terminal inner nodes).
If v itself has a gap, it also needs to include a foot node. The order and
dominance relation on the nodes in the constructed elementary tree
are determined by the order and nesting of the scopes of the nodes:
the scope of an anchor is the anchor itself, the scope of a non-terminal
node is the cover of the corresponding child node, and the scope of a
foot node is the gap that triggered the inclusion of this foot node. Well-
nestedness ensures that the nesting of the scopes can be translated into
a tree relation between the nodes in the elementary tree.

The combination of Lemmata 1, 3 and 4 implies

Theorem 5 A T-drawing is a tag drawing iff it is well-nested and
has gap degree at most one.

1.5 Conclusion
This paper introduced drawings as models of syntactic structure and
presented a novel perspective on lexicalised tag by characterising a
class of drawings structurally equivalent to tag derivations. The draw-
ings in this class—we called them tag drawings—have two properties:
they have a gap degree of at most one and are well-nested. tag drawings
are suitable structures for a model-theoretic treatment of tag.

We believe that our results can provide a new perspective on the
treatment of languages with free word order in tag. Since tag’s abil-
ity to account for word order variations is extremely limited, various
attempts have been made to move tag into a description-based direc-
tion.1 Drawings allow us to analyse these proposals with respect to the
question how they extend the class of models of tag, and what new de-
scriptive means they offer to talk about these models. We feel that these
issues were not clearly separated in previous work on model-theoretic
tag (Palm, 1996, Rogers, 2003).

A model-theoretic approach to natural language processing lends
itself to constraint-based processing techniques. We have started to in-
vestigate the computational complexity of constraint satisfaction prob-
lems on tag drawings by defining a relevant constraint language and
formulating a constraint solver that decides in polynomial time whether

1Kallmeyer’s dissertation (Kallmeyer, 1999) provides a comprehensive summary.
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a formula in that language can be satisfied on a well-nested drawing
(Bodirsky et al., 2005). This solver can be used as a propagator in a
constraint-based processing framework for tag descriptions.

Our immediate future work will be concerned with the further devel-
opment of our processing techniques into a model-based parser for tags.
The current constraint solver propagates information about structures
that are already known; a full parser would need to construct these
structures in the first place. In the longer term, we hope to characterise
other proof-theoretic syntactic frameworks in terms of drawings, such
as Multi-Component tag and Combinatory Categorial Grammar.
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