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ABSTRACT:Lattice protein models are a major tool for investigating principles of protein fold-
ing. For this purpose, one needs an algorithm that is guaranteed to find the minimal energy
conformation in some lattice model (at least for some sequences). So far, there are only algo-
rithm that can find optimal conformations in the cubic lattice. In the more interesting case of
the face-centered-cubic lattice (FCC), which is more protein-like, there are no results. One of
the reasons is that for finding optimal conformations, one usually applies a branch-and-bound
technique, and there are no reasonable bounds known for the FCC. We will give such a bound
for Dill’s HP-model on the FCC, which can be calculated by a dynamic programming approach.

1 Introduction

Simplified protein models such as lattice models are used to investigate the protein
folding problem, the major unsolved problem in computational biology. An important
representative of lattice models is the HP-model, which hasbeen introduced by [8].
In this model, the 20 letter alphabet of amino acids (called monomers) is reduced to a
two letter alphabet, namely H and P. H representshydrophobicmonomers, whereas P
representpolar or hydrophilic monomers. Aconformationis a self-avoiding walk on
the cubic lattice. The energy function for the HP-model simply states that the energy
contribution of a contact between two monomers is−1 if both are H-monomers, and
0 otherwise. Two monomers form acontactin some specific conformation if they are
not connected via abond, and the euclidian distance of the positions is1. One searches
for a conformation which maximizes the number of contacts, which is a conformation
whose hydrophobic core has minimal surface. Just recently,the structure prediction
problem has been shown to be NP-hard even for the HP-model [4,6] on the cubic
lattice. A sample conformation for the sequence PHPPHHPH inthe two-dimensional
lattice with energy−2 is given in Figure 1. The white beads represent P, the black
ones H monomers. The two contacts are indicated via dashed lines.

For investigating general properties of protein-folding,one needs an algorithm which
is guaranteed to find a conformation with maximal number of contacts (at least for
some sequences, since the problem is NP-hard in general). Although there are ap-
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FIG. 1. Sample Conformation

proximation algorithms for the HP-model in the cubic lattice [7] and FCC [1], the
need of an optimal conformation in this case implies that onecannot use approximate
or heuristic algorithms for this purpose. To our knowledge,there are two algorithms
known in the literature that find conformations with maximalnumber of contacts (op-
timal conformations) for the HP-model, namely [11, 2]. Bothuse some variant of
Branch-and-Bound.

The HP-model is original defined for the cubic lattice, but itis easy to define it for
any other lattice. Of special interest is the face-centered-cubic lattice (FCC), which
models protein backbone conformations more appropriatelythan the cubic lattice.
When considering the problem of finding an optimal conformation, the problem oc-
curs that no good bound on the number of contacts for the face-centered cubic lattice
is known, in contrast to the HP-model. Both known algorithm for finding the optimal
conformation search through the space of conformations using the following strategy:

• fix one coordinate (say x) of all H-monomers first

• calculate an upper bound on the number of contacts, given fixed values for the
H-monomers.

An upper bound can easily be given in the case of the HP-model,if only the number
of H-monomers are known in every plane defined by an equationx = c (called x-layer
in the following). For this purpose, one counts the number ofHH-contacts and HH-
bonds (since the number of HH-bonds is constant, and we do notcare in which layer
the HH-bonds actually are). Let us call this generalized contacts in the following.
Then one distinguishes between generalized contacts within an x-layer, and general-
ized contacts between x-layers. Suppose that the positionsoccupied by H-monomers
are given by black dots in Figure 2. Then we have 5 H-monomers in layerx = 1,
and 4 H-monomers inx = 2. Furthermore, we have 4 generalized contacts between
the layerx = 1 andx = 2 (straight lines), 5 contacts withinx = 1 and 4 contacts
within x = 2 (dashed lines). This coincide with the upper bound given 5 H-monomer
in x = 1, and 4 H-monomers inx = 2, which is calculated as follows. For the number
of interlayer contacts, we know that every interlayer contact consumes 1 H-monomer
in every layer. Hence, the maximal number of interlayer contacts is the minimum of
the number of H-monomer in each layer, in this casemin(5, 4) = 4. The upper bound
for the layer contacts is a bit more complicated, since it uses the concept of a frame.
Consider some layer withn H-monomers. Leta = ⌈√n⌉ andb = ⌈n

a
⌉. (a, b) is

the minimal rectangle (frame) aroundn H-monomers. Then the maximal number of
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FIG. 2. Layer and Interlayer Contacts

contacts within this layer is upper bound by2n − a − b. In our example, we get for
the first layern = 5, a = 3 andb = 2, and the maximal number of layer contacts is
then10 − 3 − 2 = 5, as it is the case in our example. Forn = 4, we geta = 2, b = 2
and the maximal number is then8− 2− 2 = 4, as in our case. For details, see [11, 2].

For the face-centered-cubic lattice (FCC) is no similar bound known, and there is
no trivial transfer from the cubic lattice. The bound for FCClattice is harder, since the
interlayer contacts are much more complex to determine. Thereason is that the FCC
has 12 neighbors (position with minimal distance), whereasthe cubic lattice has only
6. Thus, in any representation of FCC, we have more than one neighbor in the next
x-layer for any point~p, which makes the problem complicated. Such an upper bound
will be given in this paper.

2 Preliminaries

Given vectors~v1, . . . , ~vn, the lattice generated by~v1, . . . , ~vn is the minimal set of
pointsL such that∀~u,~v ∈ L, both~u + ~v ∈ L and~u − ~v ∈ L. An x-layer in a
lattice L is a plane orthogonal to the x-axis (i.e., is definedby the equationx = c)
such that the intersection of the points in the plane and the points ofL is non-empty.
The face-centered cubic lattice(short FCC, see [5]) is defined as the latticeD3 =

{
(

x
y
z

)

|
(

x
y
z

)

∈ Z
3 andx + y + z is even}. For simplicity, we use a representation

of D3 that is rotated byφ = 45◦ along the x-axis. Since we want to have distance 1
between successive x-layers, and unit distance between neighbors in one x-layer, we
additionally scale the y- and z-axis, but leave the x-axis asit is. A partial view of the
lattice and its connections, as well as the rotated lattice is given in Figure 3. Thus, we
can define the latticeD′

3 to be the lattice that consists of the following sets of points
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FIG. 3: In the first figure, we have shown two x-layers (where the x-axis is shown as
the third dimension). The dark grey circles are the lattice points in the first x-layer
(where the dark grey, solid lines are the nearest neighbor connections). The light grey
circles are the points in the second x-layers (where the light grey, dashed lines are
the nearest neighbor connections in the second layer). The black lines indicate the
nearest neighbor connections between the first and the second x-layer. The second
figure shows FCC after rotation by45◦

in real coordinates:

D′
3 = {

(

x
y
z

)

|
(

x
y
z

)

∈ Z
3 andx even}

⊎ {
( x

y+0.5
z+0.5

)

|
(

x
y
z

)

∈ Z
3 andx odd}.

The first is the set of points in even x-layers, the second the set of point in odd x-layers.
A generator matrix forD′

3 is given in [3].
The setND′

3
of minimal vectors connecting neighbors inD′

3 is given by

ND′

3
=

{(

0
±1
0

)

,
(

0
0
±1

)}

⊎
{(

±1
±0.5
±0.5

)}

.

The vectors in the second set are the vectors connecting neighbors in two different
successive x-layers. Two points~p and~p′ in D′

3 areneighborsif ~p − ~p′ ∈ ND′

3
.

2.1 Colorings

We are interested in the positions occupied by H-monomers insome conformation of
the HP-model. For this purpose, we introduce the concept ofcolorings(where the
coloredpoints are the points occupied by H-monomers).

DEFINITION 2.1 (Coloring)
A coloring is a functionf : D′

3 → {0, 1}. We denote with points(f) the set of all
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points colored byf , i.e.,

points(f) = {~p | f(~p) = 1}.

With num(f) we denote|points(f)|. Let f1 andf2 be colorings. Withf1 ∪ f2 we
denote the coloringf with

points(f) = points(f1) ∪ points(f2).

Two coloringsf1, f2 aredisjoint if their set of points are disjoint.f1 ⊎ f2 denotes
the disjoint union of colorings. Given a coloringf , we define thenumber of contacts
con(f) of f by con(f) = 1

2 |{(~p, ~p′) | f(~p) = 1 = f(~p′) ∧ (~p − ~p′) ∈ ND′

3
}.

In the following, we will split a complete coloringf into its composition of color-
ings of the single x-layers that contain points colored byf . The aim is to give separate
bounds for layer and interlayer contacts. For this purpose,we introduce colorings,
where the colored points are contained in one x-layer.

DEFINITION 2.2 (Plane coloring)
A coloringf is called acoloring of the planex = c if f(x, y, z) = 1 impliesx = c.
We say thatf is aplane coloringif there is ac such thatf is a coloring of planex = c.
We define Surfpl(f) to be the surface off in the planex = c, i.e.,

Surfpl(f) = |{(~p, ~p′) | (~p− ~p′) ∈ ND′

3
∧ f(~p) = 1∧ f(~p′) = 0∧ ∃y, z : ~p′ =

(

c
y
z

)

}.

With miny(f) we denote the integer

min{y | ∃z : f(c, y, z) = 1}.

maxy(f), minz(f) andmaxz(f) are defined analogously.

miny(f), maxy(f), minz(f) andmaxz(f) defines the minimal rectangle that con-
tains all points colored by the plane coloringf .

3 Description of the Upper Bound

Our purpose is to give an upper bound on the number of contacts, given thatnc H-
monomers are in the x-layer defined byx = c. Thus, we need to find a function
b(n1, . . . , nk) with

b(n1, . . . , nk) ≥ max

{

con(f) f = f1 ⊎ . . . ⊎ fk, ∀c ∈ {1, . . . , k} : fc is a
coloring of planex = c and num(fc) = nc

}

.

To developb(n1, . . . , nk), we distinguish between contacts(~p, ~p′) where both~p and
~p′ are in one x-layer, and contacts(~p, ~p′) where~p is in an layerx = c, and~p′ is in the
layerx = c + 1. The contacts within the same x-layer are easy to bound by bounding
the surface Surfpl(fc). Since every point in layerx = c has four neighbors, which
are either occupied by an colored point, or an uncolored point, we get4 · num(f) =
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2−point

4−point
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FIG. 4. H-Positions in FCC

Surfpl(fc) + 2 · LC, whereLC is the number of layer contacts. The hard part is to
bound the number of contacts between two successive layers.

For defining the bound on the number of contacts between two successive layers, we
introduce the notion of ani-point, wherei = 1, 2, 3, 4. Given any point inx = c + 1,
then this point can have at most4 neighbors in the planex = c. Let f be a coloring
of the planex = c. Then a point~p in planex = c + 1 is ani-point for f if it has i

neighbors in planex = c that are colored byf (wherei ≤ 4). Of course, if one colors
ani-point in planex = c+1, then this point generatesi contacts between layerx = c

andx = c + 1. In the following, we will restrict ourself to the case wherec = 1 for
simplicity. Of course, the calculation is independent of the choice ofc.

Consider as an example the two coloringsf1 of planex = 1 andf2 of planex = 2
as shown in Figure 4.f1 consists of 5 colored points, andf2 of 3 colored points. Since
f2 colors one4-point, one3-point and one2-point off1, there are9 contacts between
these two layers. It is easy to see that we generated the most contacts between layers
x = 1 andx = 2 by first coloring the4-points, then the3 points and so on until we
reach the number of points to be colored in layerx = 2.1

For this reason, we are interested to calculate the maximal number ofi-points (for
i = 1, 2, 3, 4), given only the number of colored pointsn in layerx = 1. But this
would overestimate the number of possible contacts, since we would maximize the
number of4-, 3-, 2- and1- point independently from each other. We have found a
dependency between these numbers, which requires to fix the side length(a, b) of the
minimal rectangle around all colored points in layerx = 1 (called theframe). In our
example, the frame is(3, 2). Of course, one has to search through all “reasonable
frames” to find the maximal number of contacts between the twolayers. This will be
treated in a later section.

Denote withmaxi(a, b, n) the maximal number ofi-points in layerx = 2 for any
coloring of layerx = 1 with n-colored points and frame(a, b). Then we have found

1Note that this might not necessarily be the coloring with themaximal number of contacts, since we might loose contacts within the layer
x = 2; although this could be included in the calculation of the upper bound, we have excluded this effect for simplicity.
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that

max4(a, b, n) = n + 1 − a − b max2(a, b, n) = 2a + 2b − 2ℓ − 4

max3(a, b, n) = ℓ max1(a, b, n) = ℓ + 4.

The remaining part is to findℓ = max3(a, b, n), which is a bit more complicated.
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b−1 many 2−points

a−1 many

a−1 "missing"

1 "missing" 4−point 

b−1 many 2−points

a−1 many
2−points

b−1 many "missing" 4−points

2−points

4−points

FIG. 5: Colorings and corresponding4-, 3- and2-points (1-points are not shown).
4-points are indicated by , 2-points by��

��
��

��
��
��

, and the single3-point by a×.

Before we will do so, let us explainmax4(a, b, n) andmax2(a, b, n) first. Consider
the left coloring in Figure 5, which is a coloring that completely fills its frame (with
a = 6 and b = 9). This coloring containsn = 54 points. If one shifts thisn
colored points by(1,−0.5, 0.5), than one gets all4-points except thea− 1 “missing”
4-points in the bottom row, theb − 1 “missing” 4-points in the last column, and the
one “missing” 4-point in the right bottom corner. This makes

n − (a − 1) − (b − 1) − 1 = n + 1 − a − b

as given bymax4(a, b, n). For the 2-points, we have2a+2b−4 many 2-points, where
the−4 stems from the “missing” 2-points at the 4 corners (which arein fact 1-points).

Now the interesting part is that basically, this relation does not change if we remove
some colored points. Consider the right coloring in Figure 5, which has four colored
points deleted. By removing four colored points, we remove four 4-points. Hence,
we have again that the number of 4-points isn + 1 − a − b. For the 2-points, four
2-points have been deleted in the top row, and one additional2-point has been deleted
in the first column. But the four deleted 4-points now have become 2-points except
one, which has become a 3-point. One could say that the 3-point has been generated
by merging two moved 2-points (one from the top row, and one from the first column).
Hence, we have that the number of 2-points is

2a + 2b − 4 − 2ℓ,

whereℓ is the number of 3-points.
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FIG. 6. Uncolored diagonals and 3-points, which are indicated by ×.

Now let’s turn to the 3- and 1-points. For findingℓ = max3(a, b, n), we define
k = edge(a, b, n) = max{k ∈ N | ab − 4k(k+1)

2 ≥ n}, andr = ext(a, b, n) =

⌊ab−4
k(k+1)

2 −n

k+1 ⌋. The geometric interpretation ofk = edge(a, b, n) andr = ext(a, b, n)
is the following. k is the maximal number of diagonals that can be left uncoloredin
all corners of the frame (when distributing the uncolored diagonals equally on all cor-
ners).r ≤ 3 is the number of times that we can add one additional uncolored diagonal.

To give an example, consider the coloring in Figure 6 withn = 38, a = 6 and
b = 9. Thenk = edge(a, b, n) is 2. That means, that in each corner we can have at
least 2 diagonal lines that are uncolored.r = edge(a, b, n) is 1, which means that in
one corner, we can add a third uncolored diagonal.

Now the interesting part is, that the number of uncolored diagonal determines the
number of 3-points. Consider the left upper corner. There are two uncolored lines,
and two 3-points are generated in this corner. The same relation holds for all other
corners as well. We will show that we can define the bound on thenumber of 3-points
by

max3(a, b, n) =

{

4k + r if 4k + r < 2(a − 1)

2(a − 1) else.

(assuming without loss of generality thata ≤ b).
For the number of1-points, it is easy to see that every corner produces one 1-point.

For every 3-point, one additional 1-point is generated, which givesℓ + 4, whereℓ is
the number of 3-points.

3.1 Plan of the Paper

In Section 4, we will determine the number of points havingn possible contacts, given
some parameter of the coloringf of planex = c. The parameters are the surface
Surfpl(f), and the number of points with3 possible contacts.

In Section 5, we will then show how we can determine the numberof points having
3 possible contacts, given Surfpl(f). Surfpl(f) is determined by the minimal rectangle
(called frame) around all points colored byf . Thus, we get an upper bound for both
the contacts in the planex = c, and the contacts betweenx = c andx = c + 1 by
enumerating all possible frames forf . Of course, we cannot enumerateall frames.
Thus, we introduce in Section 6 a concept of “sufficiently filled frames”, i.e. frames
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that are not too big for the number of points to be colored within the frame. These
frames will be called normal. Then, we prove that it is sufficient to enumerate only
the normal frames to get an upper bound. In fact, this is the most tedious part of
the construction. In Section 7, we combine the results in a dynamic programming
approach, which allows to calculate the upper bound for the number of contacts in
polynomial time. We will compare our bound with the trivial6n bound used so far in
the literature.

4 Number of Points with 1, 2, 3, 4-Contacts

In the following, we want to handle caveat-free, connected colorings, which we will
define first.

DEFINITION 4.1 (Path, connected coloring)
Let f be a coloring of the planex = c, and let~p and ~p′ be two points such that

f(~p) = 1 = f(~p′). A path between~p and~p′ in f is a list of points

~p = ~p1 . . . ~pn = ~p′

such that

∀1 ≤ i < n :

(

~pi+1 − ~pi

)

∈
{

±
(

0
1
1

)

,±
(

0
1
−1

)

,±
(

0
1
0

)

,±
(

0
0
1

)}

.

A coloringf is connectedif for any two points~p and~p′ with f(~p) = 1 = f(~p′), there
is a path between~p and~p′ in f .

DEFINITION 4.2 (Caveats)
Let f be a coloring of planex = c. A horizontal caveat inf is a k-tuple of points
(~p1, . . . , ~pk) such that

∀1 ≤ j < k :
(

~pj+1 = ~pj +
(

0
1
0

))

f(~p1) = 1 = f(~pk)

∀1 < j < k :f(~pj) = 0

A vertical caveat in fis defined analogously satisfying

∀1 ≤ j < k :
(

~pj+1 = ~pj +
(

0
0
1

))

instead. We say thatf contains acaveatif there is at least one horizontal or vertical
caveat inf . f is calledcaveat-freeif it does not contain a caveat.

For calculating the number of contacts, we distinguish for aplane coloringf the
points in the next and previous plane according to the numberof contacts that can be
achieved by coloring the specific point.
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DEFINITION 4.3
Let f be a coloring of planex = c. We say that a point~p is a 4-point for f if ~p is
in planex = c + 1 or x = c − 1 and~p has 4 neighbors~p1, . . . , ~p4 in planex = c

with f(~p1) = · · · = f(~p4) = 1. Analogously, we define3-points,2-points and1-
points. Furthermore, we define#4c−1(f) = |{~p | ~p is a4-point forf in x = c − 1}|.
Analogously, we define#4c+1(f) and#ic±1(f) for i = 1, 2, 3.

Trivially, we get for any coloringf of planex = c that∀i ∈ [1..4] : #ic−1(f) =
#ic+1(f). Hence, we define for a coloringf of planex = c that#i(f) = #ic−1(f)
(= #ic+1(f)) for every i ∈ [1..4]. For calculating the number ofi-points for a
coloring f of planex = c, we need the additional notion of an x-steps forf . An
x-stepf consists of 3 points inx = c that are sufficient to characterize one 3-point.
Furthermore, we need to now whether the lines of the coloringoverlap or not.

DEFINITION 4.4 (X-step)
Let f be a coloring of planex = c. An x-step forf is a triple(~p1, ~p2, ~p3) such that

f(~p1) = 0

f(~p2) = 1 = f(~p3)

~p1 − ~p2 = ±
(

0
1
0

)

~p1 − ~p3 = ±
(

0
0
1

)

With xsteps(f) we denote the number ofx-steps off .

DEFINITION 4.5 (Overlaps)
Let f be a coloring of planex = c. We define

r overlap+(f, z) =

∣

∣

∣

∣

{

y f(c, y, z) = 1 ∧ f(c, y, z + 1) = 1
∧ ∃y(f(c, y, z) = 1) ∧ ∃y(f(c, y, z + 1) = 1)

}∣

∣

∣

∣

#r not overlaps(f) = |{z | minz(f) ≤ z < maxz(f) ∧ r overlap+(f, z) = 0}|

LEMMA 4.6
Let f be a connected, horizontal caveat-free coloring of the plane x = c. Then the
following equations are valid:

#4(f) = num(f) + 1 − 1

2
Surfpl(f) + #r not overlaps(f) (4.1)

#3(f) = xsteps(f) − 2#r not overlaps(f) (4.2)

#2(f) = 2num(f) − 2#4(f) − 2#3(f)− 2 − #r not overlaps(f) (4.3)

#1(f) = #3(f) + 4 + 2#r not overlaps(f) (4.4)

= xsteps(f) + 4

PROOF. Claims(4.1), (4.2) and(4.4) are proven by induction on the height off .

base case For the base case thatf has height1, we know that we have#4(f) = 0,
#3(f) = 0, #1(f) = 4 and that Surfpl(f) = 2n + 2. Thus, claims(4.1), (4.2)
and(4.4) hold.
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induction step Let f be a plane coloring of heighth + 1. Let the coloringf ′ bef

with the rowz = maxz(f) deleted.
Claim (4.1): Let nr be the number of points introduced in the last linez =

maxz(f) in f . Let r = r overlap+(f, maxz(f) − 1). We have two cases:
1. r = 0. This implies Surfpl(f) = Surfpl(f

′)+2nr+2. Furthermore,#4(f) =
#4(f ′) and

#r not overlaps(f) = #r not overlaps(f ′) + 1.

Thus we get by induction hypotheses

#4(f) = #4(f ′)

= num(f ′) + 1 − 1

2
Surfpl(f

′) + #r not overlaps(f ′)

= (num(f) − nr) + 1 − 1

2
(Surfpl(f) − 2nr − 2)

+ (#r not overlaps(f) − 1)

= num(f) + 1 − 1

2
Surfpl(f) + #r not overlaps(f)

2. r > 0. This implies Surfpl(f) = Surfpl(f
′) + 2(nr − r) + 2. Furthermore,

#4(f) = #4(f ′) + (r − 1) and #rnot overlaps(f) = #r not overlaps(f ′).
Thus we get by induction hypotheses:

#4(f) = #4(f ′) + (r − 1)

= num(f ′) + 1 − 1

2
Surfpl(f

′)

+ #r not overlaps(f ′) + (r − 1)

= (num(f) − nr) + 1 − 1

2
(Surfpl(f) − 2(nr − r) − 2)

+ #r not overlaps(f) + (r − 1)

= num(f) − nr + 1 − 1

2
Surfpl(f) + nr − r + 1

+ #r not overlaps(f) + r − 1

= num(f) − 1

2
Surfpl(f) + 1 + #r not overlaps(f)

Claims (4.2) and (4.4): We have listed in Figure 7 all cases of how the last two
lines off can overlap (or not). In any case where we have an overlap, then the
introduction of an x-step between the last two lines yields in f an additional
3-point and an additional1-point.
If there is no overlap between the last two lines, then there are two x-steps (since
f is connected). But these introduce no additional3-points, but two additional
1-points.
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For Claim(4.3), we first note that the sum of contacts of all4-, 3-, 2- and1-points
must yield4n, since this is the number of contacts that can be achieved if all those
points are filled in the next plane. Hence,

2#2(f) = 4n− 4#4(f) − 3#3(f) − 1#1(f)

= 4n− 4#4(f) − 3#3(f) − (#3(f) + 4 + 2#r not overlaps(f))

= 4n− 4#4(f) − 4#3(f) − 4 − 2#r not overlaps(f)).

This gives

#2(f) = 2n− 2#4(f) − 2#3(f) − 2 − #r not overlaps(f)).

We will show later in Lemma 6.12 that it is sufficient to consider only the case
of plane colorings, where successive colored lines overlap. In principle, this lemma
can be used to show that our bound is even valid for all caveat-free colorings (thus
skipping the additional condition that the coloring must beconnected), albeit this is
not explicitly proven in this paper.

COROLLARY 4.7
Let f be a coloring of the planex = c with the property that #rnot overlaps(f) = 0.
Then

#4(f) = n + 1 − 1

2
Surfpl(f) (4.5)

#3(f) = xsteps(f) (4.6)

#2(f) = 2n− 2#4(f) − 2#3(f) − 2 (4.7)

#1(f) = #3(f) + 4 (4.8)

= xsteps(f) + 4

With this corollary, we need only to bound Surfpl(f) and xsteps(f) (which is a
bound on the number of3-points) to calculate bounds on the number of4-, 3-, 2- and
1-points.

5 Bound on the Number of 3-Points.

Given a plane coloringf , then we denote with frame(f) the pair(a, b), wherea =
maxz(f) − minz(f) + 1 andb = maxy(f) − miny(f) + 1. a is called theheight
of f , andb is called thewidth off . The frame gives us the possibility to calculate a
lower bound on the surface of a plane coloring, which is then an upper bound on the
layer contacts. We need more information about a coloring than the frame to generate
a bound for xsteps(f), which will be captured by the notion of a detailed frame. The
formal definition will be given later. In principle, the detailed frame just counts for
every corner, how many diagonals we can draw (starting from the corner) without
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1−point f’ 1−point f’ 1−point f’1−point f’
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1−point f’1−point f’ 1−point f’ 1−point f’
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FIG. 7: Cases for claims 4.2 and 4.4.1-points forf are indicated by , 2-points forf
by , and3-points forf by�

�
�

�
�
�

. We have indicated all1-points forf ′, and have shown
only those2-points forf which have been1-points forf ′. Note that some of them are
also1-points forf , other change into a2-point or3-point forf .
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touching a point that is colored byf . E.g., consider the following plane coloringfex

given by the black dots:

fex:

Note that there are 8 positions in the next layer that are3-points for this coloring. We
have indicated these points with a×. We can draw 3 diagonals from the left-lower
corner, 2 from the left upper, 1 from the right lower, and 2 from the right upper corner.
Note that the number of3-points near every corner is exactly the same. We will prove
this relationship later.

The detailed frame of a coloringf is the tuple(a, b, ilb, ilu, irb, iru), where(a, b)
is the frame off , andilb is the number of diagonals that can be drawn from the left-
bottom corner.ilu, irb, iru are defined analogously. Forfex, the detailed frame is
(6, 9, 3, 2, 1, 2). The interesting part is that the the number of diagonals to be drawn
gives an upper bound for the number of points to be colored (Proposition 5.4)and for
the number of x-steps (Lemma 5.6).

Now we start with the formal definition of a detailed frame.

DEFINITION 5.1 (Corner, inbound vector)
Let f be a coloring of the planex = c. The set ofcornersC(f) of f is defined by

C(f) =

{(

c
miny(f)

minz(f)

)

,

(

c
miny(f)

maxz(f)

)

,

(

c
maxy(f)

minz(f)

)

,

(

c
maxy(f)

maxz(f)

)}

.

We will call these cornerscf
lb, c

f
lu, c

f
rb, andcf

ru, respectively. We omitf if it is clear
from the context. We define for every cornerc ∈ C(f) the inbound vectorinf (c) of c

in f by

inf (clb) =
(

0
0.5
0.5

)

inf (clu) =
(

0
0.5
−0.5

)

inf (crb) =
(

0
−0.5
0.5

)

inf (cru) =
(

0
−0.5
−0.5

)

.

In the following, we consider lines (i.e., one-dimensional, affine subspacesU + ~u

of R
3, whereU = Lin(~v) is the linear, one-dimensional subspace generated by the

vector~v). We are mainly considering lines which are either parallelto either the y-
axis, or the z-axis, or which are diagonal in an x-layer. The diagonal ones are defined
as the affine subspaces

Lin
(

0
0.5
0.5

)

+ ~u or Lin
(

0
0.5
−0.5

)

+ ~u.
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Considering the diagonal lines, then there is for every corner exactly one diagonal line
which cuts the frame around a plane coloringf in exactly one point (namely the corner
itself). This leads to the definition of a tangent. We say thata lineL = Lin(~u) + ~v

intersectswith a coloringf if there is a point~p ∈ L such thatf(~p) = 1.

z

y
lbc crb

cruclu

)ta(clu )ta(cru

ta(c )lb

luin(c )

lbin(c ) rbin(c )

ruin(c )

ta(c )rb

FIG. 8: Corner, inbound vectors and tangents. The inbound vectors are shown in dark
grey, and the tangents in light grey.

DEFINITION 5.2 (Tangent)
Let f be a plane coloring with frame(a, b). We define thetangent vectortavecf (c) of
the cornerc ∈ C(f) of f by

tavecf (clb) =
(

0
0.5
−0.5

)

tavecf (clu) =
(

0
0.5
0.5

)

tavecf (crb) =
(

0
0.5
0.5

)

tavecf (cru) =
(

0
0.5
−0.5

)

.

Then thetangenttaf (c) in the cornerc ∈ C(f) of f is defined by

taf (clb) = Lin(tavecf (clb)) + clb taf (clu) = Lin(tavecf (clu)) + clu

taf (crb) = Lin(tavecf (crb)) + crb taf (cru) = Lin(tavecf (cru)) + cru

Again, we omit thef if it is clear from the context. The above definitions are
summarized in Figure 8.

DEFINITION 5.3 (Detailed frame, characteristics)
The detailed frameof a plane coloringf with frame (a, b) is defined as the tuple

(a, b, i
f
lb, i

f
lu, i

f
rb, i

f
ru), wherei

f
j for j ∈ {lb, lu, rb, ru} is the minimal integer such

that ta(cj) + i
f
j · in(cj) intersects withf . If f is clear from the context, we omit it.

Let I=(ik)4k=1 beilb, ilu, irb, iru ordered by size. ThenI is called theedge charac-
teristicsof f . Thecharacteristicsof plane coloringf is a triple(a, b, I), where(a, b)
is the frame off , andI is the edge characteristics.
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PROPOSITION5.4
Let (a, b, i1, i2, i3, i4) be the detailed frame of a plane coloringf . Then num(f) ≤
ab − ∑4

j=1
ij(ij+1)

2 .

DEFINITION 5.5 (Diagonal caveat)
A diagonal caveatin f is a k-tuple of points(~p1, . . . , ~pk) of D′

3 with k ≥ 3 such that

∀1 ≤ j < k :
(

~pj+1 = ~pj +
(

0
1
1

))

∨ ∀1 ≤ j < k :
(

~pj+1 = ~pj +
(

0
1
−1

))

f(~p1) = 1 = f(~pk)

∀1 < j < k :f(~pj) = 0

The number of diagonal caveats inf is denoted by diagcav(f)

The next lemma gives us a good bound on the number of3-points of a plane coloring
f , given its edge characteristics. Recall the above example coloringfex with detailed
frame(6, 9, 3, 2, 1, 2). Since the coloring does not have any diagonal caveats, the next
lemma will show that xsteps(f) is given by3 + 2 + 1 + 2 = 8, as we have indicated.

LEMMA 5.6
Let f be a connected, caveat-free coloring of the planex = c which has a detailed
frame(a, b, i1, i2, i3, i4). Then

xsteps(f) =
∑

j∈[1..4]

ij − diagcav(f).

z

y

p
ymin

p
2

p

p
1

3

p

p

4

5

FIG. 9. Points considered in the proof of Lemma 5.6

PROOF. It is sufficient to prove the lemma for the special case thatf has the de-
tailed frame(a, b, ilb, 0, 0, 0). The reason is just that from any connected, caveat-free
plane coloringf we can generated four colorings(f1, f2, f3, f4) with detailed frames
(a1, b1, ilb, 0, 0, 0) . . . (a4, b4, 0, 0, 0, iru) such that

#3(f) =
∑

j∈[1..4]

#3(fj).
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We prove the case(a, b, ilb, 0, 0, 0) by induction. The base casesa = b = 1,
a = 2, b = 1 anda = 2 = b are trivial. For the induction step, letf be a plane
coloring with detailed frame(a, b, ilb, 0, 0, 0) such that(a, b) ≥ (2, 2). If ilb = 0,
then#3(f) = 0 and diagcav(f) = 0.

Otherwise letf ′ be generated fromf by deleting the first column. I.e.,

f ′(x, y, z) =

{

0 if y = miny(f)

f(x, y, z) else.

Thenc
f ′

lb = c
f
lb +

(

0
1
0

)

= c
f
lb +

(

0
0.5
−0.5

)

+
(

0
0.5
0.5

)

. Hence,

taf ′

(cf ′

lb ) = Lin
(

0
0.5
−0.5

)

+ c
f ′

lb

= Lin
(

0
0.5
−0.5

)

+ c
f
lb +

(

0
0.5
−0.5

)

+
(

0
0.5
0.5

)

= Lin
(

0
0.5
−0.5

)

+ c
f
lb + inf (cf

lb)

= taf (cf
lb) + 1 · inf (cf

lb), (5.1)

which implies that for anyk > 0

taf ′

(cf ′

lb ) + (k − 1) · inf ′

(cf ′

lb ) = taf (cf
lb) + k · inf (cf

lb). (5.2)

Since for anyk with k < ilb, taf (cf
lb)+k · inf (cf

lb) does not intersect withf , we know
thatf ′ has a detailed frame(a, b − 1, i′lb, 0, 0, 0) with i′lb ≥ ilb − 1.

Let
~pminy

=
(

c
miny(f)

z

)

be the point withz = min{z′ | f
( c

miny(f)

z′

)

= 1}. Sincef has detailed frame

(a, b, ilb, 0, 0, 0), we know that~p1 =

(

c
maxy(f)

minz(f)

)

and ~p2 = f

(

c
maxy(f)

maxz(f)

)

satisfy

f(~p1) = 1 = f(~p2). Sincef is caveat-free, this implies that we havef(~p3) = 1 for

~p3 =
(

c
maxy(f)

z

)

. Again sincef is caveat-free, this implies that we havef(~p4) = 1,

where

~p4 =
(

c
miny(f)+1

z

)

.

Let

~p5 =
( c

miny(f)+1
z−1

)

= ~pminy
+

(

0
+1
−1

)

Figure(9) shows the different points considered in the proof.
We distinguish the following two cases for the different colorings of point~p5:
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1. f(~p5) = 1. Then
diagcav(f) = diagcav(f ′). (5.3)

Furthermore, either~pminy
is an element of taf (cf

lb) + ilb · inf (cf
lb), which implies

that ~p5 is an element of taf (cf
lb) + ilb · inf (cf

lb), or ~pminy
is not an element of

taf (cf
lb) + ilb · inf (cf

lb). In the latter case, there must be ak > ilb with ~pminy
∈

taf (cf
lb)+k · inf (cf

lb). Then there must be another point~p′ =
(

c
y
z

)

with f(~p′) = 1,

y 6= miny(f) and~p′ ∈ taf (cf
lb) + ilb · inf (cf

lb). In both cases there is a point in
points(f)∩ (taf (cf

lb)+ ilb · inf (cf
lb)) with an y-coordinate different fromminy(f).

Hence, this point is contained inf ′, which implies that this point is an element
of taf ′

(cf ′

lb ) + (ilb − 1) · inf ′

(cf ′

lb ) by Equation (5.2). Thenf ′ has detailed frame

(a, b− 1, ilb − 1, 0, 0, 0). Since(~p5 −
(

0
1
0

)

, ~p5, ~pminy
) is an x-step inf but not in

f ′, we get

#3(f) = #3(f ′) + 1

Then

#3(f) = #3(f ′) + 1

= [(ilb − 1) − diagcav(f ′)] + 1 (Ind. Hyp.)

= ilb − diagcav(f). (by (5.3))

2. f(~p5) = 0. Since there is no x-step between~pminy
and ~p5, we get

#3(f) = #3(f ′). (5.4)

We divide this case into two sub-cases:
(a) ~pminy

is an element of a diagonal caveat off : Then we know that there must

be a point~p ∈ taf (cf
lb) + ilb · inf (cf

lb) with f(~p) = 1 which has an y-coordinate
different fromminy(f). Hence,f ′ has the detailed frame

(a, b − 1, ilb − 1, 0, 0, 0)

Since we have removed one diagonal caveat by deleting the first column (namely
the one starting with~pminy

), we get

diagcav(f) − 1 = diagcav(f ′). (5.5)

Then

#3(f) = #3(f ′) (by (5.4))

= (ilb − 1) − (diagcav(f ′)) (Ind. Hyp.)

= (ilb − 1) − (diagcav(f) − 1) (by (5.5))

= ilb − diagcav(f)



An Upper Bound for the Number of Contacts in the FCC-HP-Model179

(b) ~pminy
is not an element of a diagonal caveat off : Then

diagcav(f) = diagcav(f ′). (5.6)

Furthermore,~pminy
must be the only element of taf (cf

lb) + ilb · inf (cf
lb) colored

by f . Then~p4 is an element of taf (cf
lb)+(ilb +1) · inf (cf

lb) and is colored black
by f ′. Hence, we know thatf ′ has the detailed frame

(a, b − 1, ilb, 0, 0, 0).

Then

#3(f) = #3(f ′) (by (5.4))

= ilb − diagcav(f ′) (Ind. Hyp.)

= ilb − diagcav(f). (by (5.6))

A first overall bound on xsteps(f) is given in the next proposition. This holds also
for the pathological cases, which will be excluded later. A more precise bound will be
given in the next section.

PROPOSITION5.7
Let f be a caveat-free coloring of planex = c with frame(a, b). Then xsteps(f) ≤
2(min(a, b) − 1).

PROOF. Let f be a coloring of planex = c. We will first show that xsteps(f) ≤
2(a − 1) by induction ona. For the base case letf be a coloring of height1. Then
xsteps(f) = 0. For the induction step, letf be a plane coloring of heighta + 1. Let
f ′ bef with the last row deleted. Then every x-step(p1, p2, p3) in f ′ is also an x-step
in f . On the other hand, an x-step(p1, p2, p3) for f is an x-step forf ′ iff both p2 and
p3 are not in the last row. Thus,

xsteps(f) = xsteps(f ′)

+

∣

∣

∣

∣

∣

{

(p1, p2, p3) (p1, p2, p3) is an x-step forf ,

∃y2, y3 : p2 =
( c

y2

maxz(f)

)

∧ p3 =
( c

y3

maxz(f)−1

)

}∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

{

(p1, p2, p3) (p1, p2, p3) is an x-step forf ,

∃y2, y3 : p2 =
( c

y2

maxz(f)−1

)

∧ p3 =
( c

y3

maxz(f)

)

}∣

∣

∣

∣

∣

Let

y
f
m1 = min{y | f(c, y, maxz(f)) = 1} − 1

y
f
m2 = max{y | f(c, y, maxz(f)) = 1} + 1

y
f ′

m1 = min{y | f(c, y, maxz(f) − 1) = 1} − 1

y
f ′

m2 = max{y | f(c, y, maxz(f) − 1) = 1} + 1
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Then by the above said and the caveat-freeness off , the only possibilities forp1 in
the x-steps that are inf but not inf ′ are

p1
1 =

(

c

y
f
m1

maxz(f)

)

p2
1 =

(

c

y
f
m2

maxz(f)

)

p3
1 =

( c

y
f′

m1

maxz(f)−1

)

p4
1 =

( c

y
f′

m2

maxz(f)−1

)

We will show that ifp1
1 is contained in an x-step forf , thenp3

1 is not. The same
holds forp2

1 andp4
1.

Now if there are pointsp1
2 andp1

3 such that(p1
1, p

1
2, p

1
3) is an x-step inf but not

in f ′, thenp1
3 =

(

c

y
f
m1

maxz(f)−1

)

, which implies thatyf ′

m1 < y
f
m1. But then we get

f(c, yf ′

m1, maxz(f)) = 0 by the caveat-freeness off , which implies thatp3
1 can not

be part of an x-step that is inf but not inf ′. Analogously, we get that ifp3
1 is part

of an x-step that is inf but not in f ′, thenp1
1 is not. We get similar results for

p2
1 and p4

1, which shows that we can add at most 2 x-steps inf . Thus, we have
xsteps(f) ≤ xsteps(f ′) + 2, which proves the claim by induction hypotheses.

Analogously, we get xsteps(f) ≤ 2(b−1), which shows xsteps(f) ≤ 2(min(a, b)−
1).

6 Number of Contacts

As already mentioned in Section 3, for every coloringf we need to distinguish be-
tween contacts, where both points are in the same layer, and contacts, where the two
corresponding points are in successive layers. The first oneare calledlayer contacts
of f (denoted by LCcf ), whereas the later ones are calledinterlayer contacts. Since we
can split every coloring into a set of plane colorings, we define this notions for plane
colorings.

6.1 Layer Contacts

Let f be a coloring of planex = c. Since all colored points off are in planex = c,
we can define thelayer contactsLCc

f of f in the planex = c by LCc
f = con(f). We

define LCn,a,b to be the maximum of all LCcf with num(f) = n, f has frame(a, b)
andf is a coloring of some planex = c.

PROPOSITION6.1
Under assumption of caveat-free colorings, LCn,a,b = 2n − a − b.

PROOF. Let f be a coloring of an arbitrary planex = c. If f is caveat-free, then the
surface off in the planex = c is 2a + 2b. Now we know that each of then points has
4 neighbors, which are either occupied by another point, or bya surface point. Hence,
we get4n = 2LCn,a,b + 2a + 2b.



An Upper Bound for the Number of Contacts in the FCC-HP-Model181

6.2 Interlayer Contacts
DEFINITION 6.2 (Interlayer contacts)
Let f be a coloring of planex = c, andf ′ be a coloring of planex = c′. If c′ = c + 1

(resp.c− 1), then we define theinterlayer contactsICf ′

f to be the number of contacts
between planex = c andx = c + 1 (resp.x = c − 1) in the coloringf ⊎ f ′, i.e.:

ICf ′

f =
∣

∣

∣

{

(~p, ~p′) f(~p) = 1 ∧ f ′(~p′) = 1 ∧ ~p′ − ~p =
(

±1
±0.5
±0.5

) }∣

∣

∣ .

Otherwise, we define ICf
′

f = 0.
Let f be a coloring of planex = c. With contactsmax(f, n) we denote the maximal

number of contacts between planex = c and x = c + 1 by placingn points in
x = c + 1. I.e.

contactsmax(f, n) = max

{

ICf ′

f f ′ is a plane coloring ofx = c + 1

with num(f ′) = n

}

LEMMA 6.3
Let f be a plane coloring ofx = c. With δ0(k) we denotemax(k, 0). Then

contactsmax(f, n) = 4 min(n, #4(f))

+ 3 min(δ0(n − #4(f)), #3(f))

+ 2 min(δ0(n −
4

∑

i=3

#i(f)), #2(f))

+ 1 min(δ0(n −
4

∑

i=2

#i(f)), #1(f))

PROOF. For the claim, it is sufficient to prove that everyf ′ maximizing ICf ′

f satisfies

if there is ak-point ~p with k < 4 andf ′(~p) = 1, then allk + 1-points ~p′ satisfy
f ′(~p′) = 1. Now suppose that this would be not the case. Letf ′ be a coloring of plane
x = c + 1 such that there is ak-point~p with f ′(~p) = 1, and that there is ak + 1-point
~p′ with f ′(~p′) = 0. Defining

f ′′(x, y, z) =















1 if
(

x
y
z

)

= ~p

0 if
(

x
y
z

)

= ~p′

f(x, y, z) else

will give us anf ′′ with num(f ′′) = num(f ′) and

ICf ′′

f = ICf ′

f + 1,

which is a contradiction to our assumption.
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In addition, we want to show that it is sufficient to consider only plane coloringsf
which maximize#3(f). We will consider the case #rnot overlaps(f) = 0 only. The
case #rnot overlaps(f) > 0 will be treated later.

LEMMA 6.4
Let f, f ′ be two plane colorings with frame(a, b), num(f) = n = num(f ′) and
#r not overlaps(f) = 0 = #r not overlaps(f ′) such that#3(f) > #3(f ′). Then

∀n′ : contactsmax(f, n′) ≥ contactsmax(f
′, n′).

PROOF. Let f andf ′ be given as described. By Lemma 6.3, we know that the max-
imal interlayer contacts can be achieved by first occupying all 4-positions, then the
3-positions and so on. Letl = #3(f) − #3(f ′). By Corollary 4.7, we know that

#4(f) = #4(f ′)

#3(f) = #3(f ′) + l

#2(f) = #2(f ′) − 2l

#1(f) = #1(f ′) + l

We consider the following cases for the numbern′ of colored points in the next layer:

1. n′ ≤ #4(f) + #3(f) + #2(f). Since we can color inf as many 4-points and 2-
points as inf ′ but possibly more 3-points, we immediately get contactsmax(f, n′) ≥
contactsmax(f

′, n′).

2. #4(f) + #3(f) + #2(f) < n′ ≤ #4(f) + #3(f) + #2(f) + l. Let k be
n′ − #4(f) + #3(f) + #2(f). Then we have to colork 1-points forf , whereas
we do not need to use 1-points forf ′ (where we can use 2-points instead). Thus,
we loosek contacts here. Sincek ≤ l and we gainl contacts by coloringl more
3-points inf than inf ′, we again get contactsmax(f, n′) ≥ contactsmax(f

′, n′).

3. #4(f) + #3(f) + #2(f) + l < n′. In this case, we get contactsmax(f, n′) =
contactsmax(f

′, n′).

Next, we want not to consider a special coloring, but only theframe the coloring
has. With MICn2,a2,b2

n1,a1,b1
we denote

max

∣

∣

∣

∣

{

ICf2

f1
num(f1) = n1 ∧ frame(f1) = (a1, b1) ∧
num(f2) = n2 ∧ frame(f2) = (a2, b2)

}∣

∣

∣

∣

We define MICn2

n1,a1,b1
= max

a2,b2
MICn2,a2,b2

n1,a1,b1
.

PROPOSITION6.5
MICn2

n1,a1,b1
= max







contactsmax(f, n2) f is a plane coloring
with frame(a1, b1)
and num(f) = n1.






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6.2.1 Normal Colorings
Now we proceed as follows. We will first consider the case thatthe frame is suffi-
ciently filled (where we define what this means in a moment). Inthis case, we can use
edge(a, b, n) and ext(a, b, n) to bound the maximal number of x-steps (or 3-points)
as described previously in Section 3. After that, we will show that we do not have to
consider the frames which are not sufficiently filled (the pathological cases). We start
with defining what “sufficiently filled” means.

DEFINITION 6.6
Let a, b, n be positive numbers such thatab ≥ n. We define edge(a, b, n) by

edge(a, b, n) = max{k ∈ N | ab − 4
k(k + 1)

2
≥ n}

Let k = edge(a, b, n). Then we define

ext(a, b, n) = ⌊ab − 4k(k+1)
2 − n

k + 1
⌋. (6.1)

Intuitively, edge(a, b, n) is the lower bound for the indent from the corners of a color-
ing of n points with frame(a, b), if we try to make the indents as uniform as possible
(since uniform indents generate the maximal number of x-steps). ext(a, b, n) is the
number of times we can add1 to edge(a, b, n). Note that(6.1) can be equivalently
defined by

ext(a, b, n) = max{r ∈ N | ab − 4
k(k + 1)

2
− r(k + 1) ≥ n} (6.2)

wherek = edge(a, b, n).

PROPOSITION6.7
0 ≤ ext(a, b, n) ≤ 3

PROOF. By contradiction. Letk = edge(a, b, n). Suppose that ext(a, b, n) ≥ 4. Then
one would get

ab − 4
k(k + 1)

2
− 4(k + 1) ≥ n

ab − 4k(k + 1) + 8(k + 1)

2
≥ n

ab − 4(k + 1)(k + 2)

2
≥ n.

But this would imply edge(a, b, n) ≥ k + 1, which is contradictory to our assumption
thatk = edge(a, b, n).

Using this definitions, we can say what sufficiently filled means.
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DEFINITION 6.8 (Normal)
Let n be an integer,(a, b) be a frame witha ≤ b. Furthermore, letk = edge(a, b, n)
andr = ext(a, b, n). We say thatn is normal for(a, b) if either4k + r < 2(a− 1), or
4k + r = 2(a − 1) andab − 4k(k+1)

2 − r(k + 1) = n.

The reason for using this notion is that ifn is normal for(a, b), edge(a, b, n) and
ext(a, b, n) yield a good bound on the number of x-steps of a plane coloringf . This
will be shown in the next two lemmas.

LEMMA 6.9
If n is normal for(a, b) (with a ≤ b), then there exists a caveat-free, connected plane
coloringf such that xsteps(f) = 4k+r, wherek = edge(a, b, n) andr = ext(a, b, n).
Furthermore, ifb ≥ 3, then thisf satisfies #rnot overlaps(f) = 0.

The proof of this Lemma is given in the appendix.

LEMMA 6.10
Let (a, b) be a frame of a caveat-free and connected plane coloringf with a ≤ b. Let
k = edge(a, b, num(f)) andr = ext(a, b, num(f)). Then

xsteps(f) ≤
{

4k + r If 4k + r < 2(a − 1)

2(a − 1) else

The proof of this Lemma is given in the appendix.

DEFINITION 6.11 (Upper bound for MICn
′

n,a,b)
Let n be a number anda ≤ b with ab ≥ n ≥ max(a, b). Let k = edge(a, b, n) and
r = ext(a, b, n), and let

l =

{

4k + r if 4k + r < 2(a − 1)

2(a − 1) else.

We define

max4(a, b, n) = n + 1 − a − b max2(a, b, n) = 2a + 2b − 2l − 4

max3(a, b, n) = l max1(a, b, n) = l + 4

With δ0(n) we denotemax(n, 0). Now we define

BMICn′

n,a,b =4 min(n′, max4(a, b, n))

+ 3 min(δ0(n
′ − max4(a, b, n), max3(a, b, n))

+ 2 min(δ0(n
′ − ∑4

i=3 maxi(a, b, n), max2(a, b, n))

+ 1 min(δ0(n
′ − ∑4

i=2 maxi(a, b, n), max1(a, b, n)).

Before we can prove that we can use BMICn′

n,a,b as an upper bound for MICn
′

n,a,b,
we need to show that we can restrict ourself to plane colorings f with the property
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that #rnot overlaps(f) = 0. To simplify matters (and since additionally we need
them later), we introduce the concept of a line number distribution. A line number
distribution is a functionD : Z → N with the property that

dom(D) = {z | D(z) > 0}

is finite. dom(D) is called thedomainof D. The line number distributionDf of a
coloringf of the planex = c is defined by

Df (z) = |{y | f(c, y, z) = 1}|

GivenD, we define num(D) =
∑

i∈dom(D) D(i).

LEMMA 6.12
Let f be a connected coloring of planex = c with frame(a, b), num(f) = n and
#r not overlaps(f) > 0. Then there is af ′ with frame (a, b′), num(f ′) = n and
#r not overlaps(f) = 0 such that

b′ ≤ b

D(f) = D(f ′)

∀n′ :contactsmax(f
′, n′) ≥ contactsmax(f, n′)

PROOF. By Induction. Letf be a coloring, and letz be a row such that we have
r overlap+(f, z) = 0. Let f1, f2 with f1 ⊎ f2 = f be the sub colorings below (and
including)z and above (including)z + 1. Now we placef1 abovef2 such that they
have overlap of1. Call this coloringf ′. Thenf ′ has heighta and widthb or b − 1.
Furthermore, we have

#r not overlaps(f ′) = #r not overlaps(f) − 1

Surfpl(f
′) = Surfpl(f) − 2

Thus, we have

#4(f ′) = #4(f)

Let Df be the line number distribution associated tof . We have the following cases:

1. Df (z) = 1 = Df(z + 1). Then

xsteps(f ′) = xsteps(f) − 2.

By Lemma 4.6, we get

#3(f ′) = #3(f)

#2(f ′) = #2(f) + 1

#1(f ′) = #1(f) − 2

which gives us contactsmax(f
′, n′) ≥ contactsmax(f

′, n′) by Lemma 6.3.
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2. Df (z) = 1 ∧ Df (z + 1) > 1 or Df(z) > 1 ∧ Df(z + 1) = 1. Then

xsteps(f ′) = xsteps(f) − 1

By Lemma 4.6, we get

#3(f ′) = #3(f) + 1

#2(f ′) = #2(f) − 1

#1(f ′) = #1(f) − 1

which gives us contactsmax(f
′, n′) ≥ contactsmax(f

′, n′) by Lemma 6.3.

3. Df (z) > 1 ∧ Df (z + 1) > 1. Then

xsteps(f ′) = xsteps(f)

By Lemma 4.6, we get

#3(f ′) = #3(f) + 2

#2(f ′) = #2(f) − 3

#1(f ′) = #1(f)

which gives us contactsmax(f
′, n′) ≥ contactsmax(f

′, n′) by Lemma 6.3.

THEOREM 6.13
Under the condition given in Definition 6.11, we get that BMICn′

n,a,b is an upper bound

for MICn′

n,a,b, i.e.,

∀a, b∃b′ ≤ b : MICn′

n,a,b ≤ BMICn′

n,a,b′ .

If n is normal for(a, b), then the above bound is tight, i.e., BMICn′

n,a,b = MICn′

n,a,b.

PROOF. That there is ab′ ≤ b such that BMICn
′

n,a,b′ is an upper bound for MICn
′

n,a,b

follows from Lemmas 4.6, 6.4, 6.12, 6.3, 6.10 and from the fact that all plane colorings
f with frame(a, b) satisfy Surfpl(f) ≥ 2a + 2b. That the bound is tight ifn is normal
for (a, b) follows from Lemma 6.9.

Note that any frame(a, b) for a connected, caveat-free coloringf with num(f) = n

will satisfy ab ≥ n ≥ max(a, b), which is the reason for the bound onn in the
above definition. We need to investigate properties of frames with respect to normality
in greater detail. The next lemma just states that normalityis kept if we either add
additional colored points without changing the frame, or weswitch to a smaller frame
for the same number of colored points.

LEMMA 6.14
Let n be normal for(a, b). Then alln ≤ n′ ≤ ab are normal for(a, b). Furthermore,
for all (a′, b′) such thata′ ≤ a∧b′ ≤ b with a′b′ ≥ n, we haven is normal for(a′, b′).

The proof of this Lemma is given in the appendix.
Clearly, we want to search only through the normal frames in order to find the

frame(a, b) which maximizes MICn
′

n,a,b, givenn andn′. This will be subject of The-
orem 6.16.
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6.2.2 Restriction to Normal Colorings
For this purpose, we define colorings which have

• maximal number of x-steps for given frame(a, b)
(i.e., xsteps(f) = 2(min(a, b) − 1)),

• maximal number of colored points under the above restriction.

To achieve xsteps(f) = 2(min(a, b) − 1), we must have 2 x-steps in every line. By
caveat-freeness, this implies that these maximal colorings are as given in Figure 10.

The definition of these colorings is achieved by defining maximal line number dis-
tributions (where maximal refers to maximal x-steps). Linenumber distributions have
been introduced earlier in Section 6.2.1. The important property of line number dis-
tributions is that one can easily obtain bounds on the maximal number of x-steps from
the line number distribution of a coloring.

The maximal line number distribution for a frame(a, b) is given byD
a,b
max3, which

has the property that below the line with maximal number of colored points, we add
2 points from line to line, and after the maximal line we subtract 2 points. For every
line number distributionD, we have defined a canonical coloringfcan(D). num(D) is
the number of colored points ofD, which is the same as the points colored byfcan(D).
The precise definitions can be found in the appendix. Figure 10 gives examples of
the corresponding canonical colorings with maximal numberof x-steps for the frames
(5, 5), (5, 6), (5, 7) and(6, 7).

fcan(D5,5
max3)

fcan(D5,6
max3)

fcan(D5,7
max3)

fcan(D6,7
max3)

FIG. 10. Canonical colorings for the elements(5, 5), (5, 6), (5, 7) and(6, 7) of M .

Now we want to find for a givenn a minimal frame(am, bm) such that(am, bm)
has maximal number of x-steps. For this purpose, we define a set of tuples

M =
⋃

{{(n, n), (n, n + 1), (n, n + 2), (n + 1, n + 2)} | n odd}

Note thatM is totally ordered by the lexicographic order on tuples. Hence, we can
define MinF(n) to be the minimal element(a, b) ∈ M such that num(Da,b

max3) ≥ n.
Note that we have excluded the case(n, n) with n even in the setM . The reason is

that in this case, any coloringf of this frame which has maximal number of x-steps
(namely2(n− 1)) is not maximally overlapping. This implies that we can reduce this
to a smaller frame. Figure 11 shows an example.

LEMMA 6.15
Let n be a number and(a, b) be MinF(n). Then
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a=6

b=6b=6

n=18
ext(a − 1, b, n) = 0

edge(a − 1, b, n) = 2

a-1=5

n=18edge(a, b, n) = 2ext(a, b, n) = 2

FIG. 11: Special case thata is even and4edge(a, b, n) + ext(a, b, n) = 2(a− 1). The
first picture is the coloring for(a, b), the second for(a − 1, b).

• There is a plane coloringf with frame(a, b) such that num(f) = n and xsteps(f) =
2(a − 1).

• n is normal for(a, b) or (a, b − 1).

The proof is given in the appendix.

THEOREM 6.16 (Existence of optimal normal frame)
Let n be an integer. Then for all frames(a′, b′) there is a frame(a, b) such that

a ≤ a′ ∧ b ≤ b′, n is normal for(a, b), (a, b − 1) or (a − 1, b) and∀n′ : MICn′

n,a,b ≥
MICn′

n,a′,b′ .

Proof (sketch). The main idea of this theorem is the following. Fixn andn′. Let
(a, b) be a frame forn with maximal number of possible x-steps (i.e., there is a plane
coloringf with num(f) = n, f has frame(a, b), and xsteps(f) = 2(min(a, b) − 1)).
Then we know that MICn

′

n,a+1,b ≤ MICn′

n,a,b since by enlarging the frame, we loose
one4-point by lemma 4.6, but can win at most one x-step by Proposition 5.7. The same
holds for MICn′

n,a,b+1. Thus, it is sufficient to consider the minimal frame(am, bm)
which has maximal number of possible x-steps. But we can showthat in this case,n
is normal for(am, bm), (am, bm − 1) or (am − 1, bm). ✷

The full proof can be found in the appendix.
This theorem states, that we need only to consider all framesthat are within distance

one from a normal frame in order to find the frame(a, b) with that maximizes MICn
′

n,a,b

for a givenn andn′. Now we are able to summarize the results.

THEOREM 6.17
Let f be a connected, caveat-free coloring withf = f1 ⊎ . . . ⊎ fk, wherefi is a
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coloring of the planex = i. Then

con(f) ≤
k−1
∑

i=1

max







LCni,ai,bi
+ BMICni+1

ni,ai,bi
|

aibi ≥ ni andni is
normal for(ai, bi),
(ai − 1, bi) or (ai, bi − 1)







(6.3)

+ LCnk,am
k

,bm
k

, (6.4)

wheream
k = ⌈√nk⌉ andbm

k = ⌈ nk

am
k

⌉.

The proof is given in the appendix.

7 Dynamic Programming Approach

Finally, we need an efficient method to calculate the bound given in Theorem 6.17. We
apply an dynamic programming approach to calculate this bound. For this purpose,
we defineB1(n1, n) to be an upper bound on the number of contacts forn colored
points, provided that the first layer containsn1 points. Formally, we defineB1(n1, n)
recursively as follows:

∀n : B(n, n) = LCn,a,b,

wherea = ⌈√n⌉ andb = ⌈n
a
⌉, and

∀n∀n1 < n :

B(n1, n) = max
1≤n2≤n−n1

(a1, b1) frame forn1

(

LCn1,a1,b1 + BMICn2

n1,a1,b1
+ B1(n2, n − n1)

)

,

where(a1, b1) is a frame forn1 if a1b1 ≥ n1 andn1 is normal for(a1, b1), (a1−1, b1)
or (a1, b1 − 1). Note that this implies thata1, b1 ≤ n1. Finally, we define

B(n) = max
1≤n1≤n

B1(n1, n)

PROPOSITION7.1
B(n) can be calculated inO(n2) space andO(n5) time.

PROPOSITION7.2
For alln1 ≤ n, we have

B1(n1, n) ≥ max







con(f) | ∃k :





f is connected and caveat-free
∧ f = f1 ⊎ . . . ⊎ fk

∧ num(f) = n ∧ num(f1) = n1











Furthermore,B(n) is an upper bound for the number of contacts con(f) in any con-
nected, caveat-free coloringf .
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PROOF. Follows directly from Theorem 6.17.

Finally, we want to compare the bound yielded by our approachwhich the6n bound
that is used so far in the literature (e.g.,in [1]). Table 1 shows a comparison of our
bound with the6n bound. The difference between our bound and the6n bound is that
our bound takes the surface of colorings into account, whereas the surface is ignored
in the6n bound. Since the surface grows slower withn than the number of contacts,
it is clear thatB(n) asymptotically converges to6n.

n =? B(n) 6n

5 8 30
10 26 60
15 44 90
20 65 120
25 86 150
30 107 180
40 152 240
50 198 300
75 316 450
100 438 600
200 942 1200
300 1461 1800

TABLE 1: Comparison of our bound with the previously introduced bound of6n con-
tacts.

8 Conclusion

We have presented an polynomial time upper bound for the number of contacts in the
FCC-HP-model. The final upper bound is composed of an upper bound for the number
of layer contacts, and an upper bound on the interlayer contacts.

There are two different outcomes of this research. The final boundB(n) can be
used in approximation algorithm (like [1]) to provide a sharper bound for the approx-
imation ratio (at least for the casen ≤ 300). The bounds on the layer and interlayer
contacts on the other hand can be used in an branch-and-boundsearch for colorings
that have maximal number of contacts for a givenn. These colorings are calledhy-
drophobic cores. They are important, since it seems to be easier to predict optimal
conformations of an HP-chain by first predicting all optimalhydrophobic cores, and
then try to thread the sequence on the hydrophobic cores. This could improve existing
protein structure prediction approaches, where an FCC lattice model is used as an an
intermediate step [10, 9]
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Appendix

A Proofs for Section 6.2.1
For Lemma 6.9, we have to show that ifn is normal fora, b, then there is a coloringf such that xsteps(f)
is 4edge(a, b, n) + ext(a, b, n). For this purpose, we start with a coloringfab that completely fills the
frame(a, b). Then, we remove fromfab diagonals from the edges such that the we have onlyn remaining
points. Letk = edge(a, b, n) andr = ext(a, b, n). Define

i1 = k i2 = k + δr≥2

i3 = k + δr≥1 i4 = k + δr≥3,
(A.1)

whereδr≥i is 1 if r ≥ i, and0 otherwise. By this definition, we geti3 ≥ i2 ≥ i4 ≥ i1. Then
i1 . . . i4 diagonals are removed from the corresponding edges (see Figure 12), and the remainingnr =

ab− 4
k(k+1)

2
− r(k + 1) − n are removed from the bottom left corner. The tedious part in the following

proof is to show that the excluded regions are actually disjoint, since otherwise we would exclude less points
than required.
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FIG. 12: Resulting coloring for Lemma 6.9. We have indicated thedifferent regions
defined in the proof. The numbers correspond to the formal definitions of these regions
in the proof.

Furthermore, we have to show that the resulting coloringf satisfies #rnot overlaps(f) = 0 if b ≥ 3.
Note that for the frame(2, 2) andn = 2, this does not hold (albeitn = 2 is normal for(2, 2)). The
resulting coloringf is of the form

and has #rnot overlaps(f) = 1. For this case, we have two x-steps, but#3(f) = 0.

Proof of Lemma 6.9.Let n, a, b andk, r be given as defined in the lemma. Definefab by

fab(x, y, z) =

(

1 if x = 0, 1 ≤ z ≤ a, 1 ≤ y ≤ b

0 else

fab just fills the rectangle with side lengtha andb completely. The cornersfab areclb =
“

0
1
1

”

, clu =
“

0
1
a

”

, crb =
“

0
b
1

”

, andcru =
“

0
a
b

”

. Let nr = ab − 4
k(k+1)

2
− r(k + 1) − n. Then0 ≤ nr < k + 1

by the definition ofr = ext(a, b, n). Let m = (a, b, i1, i2, i3, i4) be the tuple withi1 . . . i4 as defined by
Equation(A.1). We will show that there is af with m = (a, b, i1, i2, i3, i4) as a detailed frame.

Now definef by

points(f) = points(fab)

− {ta(clb) + l · in(clb) | 0 ≤ l < i1} (A.2)

− {
“

0
i1+1

1

”

+ s · tavec(clb) | 0 ≤ s < nr} (A.3)

− {ta(clu) + l · in(clu) | 0 ≤ l < i2} (A.4)

− {ta(crb) + l · in(crb) | 0 ≤ l < i3} (A.5)

− {ta(cru) + l · in(cru) | 0 ≤ l < i4} (A.6)

See Figure 12 for the location of the above defined regions. First, we have to show that the different

exclusion sets are disjoint within the frame offab, i.e., there is no point~p =
“

0
y
z

”

such that1 ≤ y ≤ b,

1 ≤ z ≤ a and~p is in two of the exclusion sets.
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For (A.2) and(A.3) it follows directly from the definition. Furthermore, we getthat

{ta(clb) + l · in(clb) | 0 ≤ l < i1 + 1} (A.7)

contains both(A.2) and(A.3), and we will show that either(A.3) is empty, or that we will get pairwise
disjointness of(A.7) with (A.4), (A.5) and(A.6).

So let’s consider(A.5) and(A.6). Since4k + r = i3 + i4 + i2 + i1 ≤ 2(a− 1), we get by definition
of m = (a, b, i1, i2, i3, i4) that

i3 + i4 ≤ a − 1 (A.8)

as follows: Ifi3 + i4 were greater thana− 1, theni3 + i4 + i2 + i1 ≥ a + a− 1 = 2a− 1 > 2(a− 1)
(since by definition ofm = (a, b, i1, i2, i3, i4) we know thati2 + i1 ≤ i3 + i4 ≤ i2 + i1 + 1), which

would be a contradiction. Now let~p3
maxz be the point withfab(

~p3
maxz) = 1, ~p3

maxz is contained in

the set defined by(A.5), and has maximalz-value. By the definition of ta(crb), ~p3
maxz must have also

maximal y-value. Now the maximal y-value that can be achieved in (A.5) is b. The z-value of a point in

ta(crb) + l · in(crb) =
“

0
b
1

”

+ Lin
“

0
0.5
0.5

”

+ l ·
“

0
−0.5
0.5

”

which has y-valueb is 1 + 2 · 0.5 · l = 1 + l. Hence, we get

~p3
maxz =

„

0
b

1+(i3−1)

«

Similarly, we define~p4
minz to be the point withfab(

~p4
minz) = 1, ~p4

minz is contained in the set
defined by(A.6), and has minimalz-value. Analogously, we get

~p4
minz =

„

0
b

a−(i4−1)

«

Now (A.5) and (A.6) would contain a common point if1 + (i3 − 1) = i3 ≥ a − (i4 − 1), i.e. if
i3 + i4 ≥ a + 1, which is not the case by Equation(A.8). By Equation(A.8), we even get that the point
“ 0

b
1+i3

”

must be colored byf , which is a point in columny = b.

In the analogous prove for(A.2), (A.3) and(A.5), we get that two cases. Eitheri1 + i2 + i3 + i4 =
2(a − 1), in which case(A.3) is empty by the definition of “n normal for(a, b)”, and we can adapt the
above proof for(A.2) and(A.5). Or i1 + i2 + i3 + i4 < 2(a − 1), in which case we can conclude that
i1 + i3 < a − 1 ≤ b − 1 and we can adapt the above proof for(A.7) and(A.5) instead.

The cases(A.2) and(A.4), as well as(A.4) and(A.6) are analogous.
In any case, we will get that there are points colored byf in columny = 1 andy = b, and in the rows

z = 1 andz = a. Hence,f has frame(a, b).
The remaining cases(A.2) and(A.6), as well as(A.4) and(A.5) are left to the reader.

Thus, we get that num(f) = ab − 4
k(k+1)

2
− r(k + 1) − nr , which isn. Furthermore,f has exactly

i1 + i2 + i3 + i4 x-steps.
Finally, we have to show thatb ≥ 3 implies #r not overlaps(f) = 0. For this, we consider the column

z

y
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i3
y = b − i3 ,
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i.e., the set of points

C = {
„

0
(b−i3)

i

«

| 1 ≤ i ≤ a}.

We have two cases:
1. f

“

0
(b−i3)

a

”

= 1. By the definition off , this implies that all points~p in C satisfyf(~p) = 1, from which

#r not overlaps(f) = 0 follows immediately.

2. f
“

0
(b−i3)

a

”

= 0. Sincei4 ≤ i3, we know that
“

0
(b−i3)

a

”

can only be excluded by the left upper

corner exclusion (A.4). This can be only the case ifi2 + i3 ≥ b. By Equations(A.1) and(A.8), we get
i2 + i3 ≤ a ≤ b, which implies that the only possible case isi2 + i3 = b. This implies by(A.1) that
i2 = i3. Furthermore, we have already proven that there is a coloredpoint in rowz = a, which implies
thati4 = i2 − 1. We have two subcases:

(a) i4 ≥ 1. Then we have the following situation:

y = b − i3
p p′

.

By the definition off , this implies that both~p =

„

0
(b−i3)
a−1

«

and~p′ are colored byf . This holds also

for all points between~p and

„

0
(b−i3)

1

«

, from which we conclude #rnot overlaps(f) = 0.

(b) i4 = 0. In this case,i3 andi2 must be1, which impliesb = 2.
For Lemma 6.10, we have to show that for every plane coloringf with frame(a, b),

xsteps(f) ≤
(

4k + r If 4k + r < 2(a − 1)

2(a − 1) else

(wherek = edge(a, b, num(f)) andr = ext(a, b, num(f))). For the case4k + r < 2(a − 1), one has
to show that the maximal number of x-steps can be achieved by distributing the edge indentsi1 . . . i4 as
uniformly as possible (i.e., such that∀j, j′ : |ij − ij′ | ≤ 1. This is done in the following proof.

Proof of Lemma 6.10.Let f ,k andr be as given in the lemma. For the first case4k + r < 2(a − 1), we
define char(i1, i2, i3, i4) to be the corresponding edge characteristics, i.e., the tuple generated by ordering
i1, i2, i3, i4 by size. We define xsteps(i1, i2, i3, i4) to bei1 + i2 + i3 + i4, and ex(i1, i2, i3, i4) to be

i1
X

j=1

j +

i2
X

j=1

j +

i3
X

j=1

j +

i4
X

j=1

j.

By Lemma 5.6, xsteps(i1, i2, i3, i4) is the maximal number of x-steps that any caveat-free and connected
plane coloringf with detailed frame(a, b, i1, i2, i3, i4) can have. ex(i1, i2, i3, i4) gives a bound on the
number of points that may be colored byf by Proposition 5.4 (i.e.,ab − ex(i1, i2, i3, i4) ≥ num(f)).
Furthermore, we define the ordering≺ on quadruples by(i1, i2, i3, i4) ≺ (i′1, i′2, i′3, i′4) iff (i1, i2, i3, i4)
is lexicographically smaller than(i′1, i′2, i′3, i′4).

Now define

I(i1, i2, i3, i4) = {(i′1, i′2, i′3, i′4) | xsteps(i′1, i′2, i′3, i′4) = xsteps(i1, i2, i3, i4)}

Now if there is an element(i′1, i′2, i′3, i′4) of I(i1, i2, i3, i4) such that there is aj andj′ with i′j ≤ i′
j′

+2,

then(i′1, i′2, i′3, i′4) is not maximal since substitutingi′j by i′j + 1 andi′
j′

by i′
j′

− 1 will give an element
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(i′′1 , i′′2 , i′′3 , i′′4 ) such that

xsteps(i′1, i′2, i′3, i′4) = xsteps(i′′1 , i′′2 , i′′3 , i′′4 )

char(i′1, i′2, i′3, i′4) ≺ char(i′′1 , i′′2 , i′′3 , i′′4 )

ex(i′1, i′2, i′3, i′4) > ex(i′′1 , i′′2 , i′′3 , i′′4 ). (A.9)

Hence, a≺-maximal element(i′1, i′2, i′3, i′4) of I(i1, i2, i3, i4) will satisfy ∀j, j′ : |i′j − i′
j′
| ≤ 1, and is

minimal with respect to ex().
Now letf be a plane coloring of frame(a, b) such that4k + r < 2(a − 1), and letf have the detailed

frame(a, b, i
f
1 , i

f
2 , i

f
3 , i

f
4 ) with i

f
1 + i

f
2 + i

f
3 + i

f
4 . Then

xsteps(f) ≤ i
f
1 + i

f
2 + i

f
3 + i

f
4

by Lemma 5.6.
Let (i1, i2, i3, i4) be a≺-maximal element inI(if1 , i

f
2 , i

f
3 , i

f
4 ). Let km bemin(if1 , i

f
2 , i

f
3 , i

f
4 ). Then

∀j : km ≤ ij ≤ km + 1 by the maximality of(i1, i2, i3, i4). Let 0 ≤ rm ≤ 3 be the number of times
such thatij = km + 1. Then

num(f) = n ≤ ab − ex(if1 , i
f
2 , i

f
3 , i

f
4 )

≤ ab − ex(i1, i2, i3, i4) (by (A.9))

= ab − (

i1
X

j=1

j +

i2
X

j=1

j +

i3
X

j=1

j +

i4
X

j=1

j)

= ab − 4(

km
X

j=1

j) − rm(km + 1)

= ab − 4
km(km + 1)

2
− rm(km + 1)

Now this implies thatkm ≤ edge(a, b, n) by definition of edge(a, b, n). If km < edge(a, b, n), then we
get,4km + rm ≤ 4edge(a, b, n) + ext(a, b, n) sincerm ≤ 3. Otherwise, ifkm = edge(a, b, n), we get
thatrm ≤ ext(a, b, n) by the definition of ext(a, b, n). This implies

xsteps(f) ≤ xsteps(if1 , i
f
2 , i

f
3 , i

f
4 ) = 4km + rm ≤ 4edge(a, b, n) + ext(a, b, n),

which proves the first case.
The second case follows from Proposition 5.7.

Proof of Lemma 6.14.Without loss of generality, we can assumea ≤ b. The first claim follows from the
definition of normal. We will prove the second claim by induction.

We will prove the case fora′ = a − 1 andb′ = b. The proof fora′ = a andb′ = b − 1 is analogous.
For smaller frames, it follows by applying induction hypotheses.

Now let a′ = a − 1 andb′ = b. If n < a′b′, there is nothing to prove. Otherwise, ifn ≥ a′b′, let
k = edge(a, b, n) andr = ext(a, b, n). Now the definition fork andr can be equivalently restated as
follows. k andr are the uniquely determined integers such that0 ≤ r ≤ 3

n + 4
k

X

j=1

j + (r + 1)(k + 1) > ab ≥ n + 4
k

X

j=1

j + r(k + 1) (A.10)

Furthermore, letk′ = edge(a′, b′, n) andr′ = ext(a′, b′, n). We have to show the following:
Claim 1 4k′ + r′ ≤ 2(a′ − 1) = 2(a − 1) − 2.

Claim 2 either4k′+r′ < 2(a−1)−2, or4k′+r′ = 2(a−1)−2 andn+4
Pk′

j=1 j+r′(k′+1) = a′b′.
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Since4k + r ≤ 2(a − 1) by assumption, for proving Claim 1 it suffices to show that

4k′ + r′ ≤ 4k + r − 2.

Given the above, then we know that

4k′ + r = 2(a′ − 1) =⇒ 4k + r = 2(a − 1) (A.11)

Furthermore, we have

4k + r = 2(a − 1) =⇒ (r = 0 ∨ r = 2)
and 4k′ + r′ = 2(a′ − 1) =⇒ (r′ = 0 ∨ r′ = 2.)

(A.12)

We have two cases:
1. r ≥ 1. Now

2(a − 1) ≥ 4k + 1

a − 1 ≥ 2k +
1

2

a ≥ 2k + 1
1

2

a ≥ 2(k + 1) (a int.)

and henceforthb ≥ a ≥ 2(k + 1). By combining(A.10) for (a, b) and(a′, b′), we get

n + 4
k

X

j=1

j + (r + 1)(k + 1) − b > (a − 1)b ≥ n + 4
k′

X

j=1

j + r′(k′ + 1)

≥

n + 4
k

X

j=1

j + (r + 1)(k + 1) − 2(k + 1) > n + 4
k′

X

j=1

j + r′(k′ + 1)

Sincer + 1 ≤ 4, we get immediatelyk′ ≤ k. We have two subcases:
(a) k′ = k. Then

n + 4
k

X

j=1

j + (r + 1)(k + 1) − 2(k + 1) > n + 4
k

X

j=1

j + r′(k + 1)

(r + 1)(k + 1) − 2(k + 1) > r′(k + 1)

r + 1 − 2 > r′

which implies thatr ≥ 2 andr′ ≤ r − 2. Hence,4k′ + r′ = 4k + r′ ≤ 4k + r − 2, which shows
the first claim.
For the second claim, if4k′ + r′ < 2(a−) − 2, then there is nothing to prove. Now assume that
4k′ + r′ = 2(a − 1) − 2. Then we know by Equation(A.11) that also4k + r = 2(a − 1). Now
4k + r = 2(a− 1) impliesr = 2 by Equation(A.12) (since we have assumedr ≥ 1). Furthermore,
we know thatab = n + 4

Pk
j=1 j + 2(k + 1) sincen is normal forb. Sincek = k′, r = 2 and

0 ≤ r′ ≤ r − 2, we getr′ = 0. Hence,a′b′ = (a − 1)b ≥ n + 4
Pk

j=1 j by Equation(A.10)
applied toa′, b′ andk′, r′. Since by our assumptions4k′ + r′ = 4k = 2(a − 1) − 2, we have to
show that(a − 1)b ≤ n + 4

Pk
j=1 j. Now

(a − 1)b = n + 4
k

X

j=1

j + 2(k + 1) − b

≤

(a − 1)b ≤ n + 4
k

X

j=1

j + 2(k + 1) − 2(k + 1).
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Hence,n + 4
Pk

j=1 j = n + 4
Pk′

j=1 j ≥ (a − 1)b, which proves claim 2. Note that this implies
that if 4k + r = 2(a− 1), then4k′ + r′ = 2(a′ − 1). Furthermore, we know thata is 2k +2, which
implies thata is even. Figure 11 shows an example of this special case.

(b) k′ ≤ k − 1. Then

4k′ + r′ ≤ 4(k − 1) + r′

≤ 4k − 4 + 3 = 4k − 1 (r′ ≤ 3)

≤ 4k + r − 2. (r ≥ 1)

In this case, we have eitherr′ = 3, which implies by(A.12) that4k′ + r′ < 2(a′ − 1), or r′ ≤ 2,
which implies4k′ + r′ < 4k + r − 2. Again, this gives us4k′ + r′ < 2(a′ − 1), which proves the
second claim for this case.

2. r = 0. Then
a ≥ 2k + 1,

and thereforeb ≥ a ≥ 2k + 1. Now by Equation(A.10) applied toa, b anda′, b′, we get

n + 4
k

X

j=1

j + 1(k + 1) − b > (a − 1)b ≥ n + 4
k′

X

j=1

j + r′(k′ + 1)

≥

n + 4
k

X

j=1

j + 1(k + 1) − 2k − 1 > n + 4
k′

X

j=1

j + r′(k′ + 1)

This gives immediatelyk′ ≤ k. Now if k′ were the same ask, then we would get

n + 4
k

X

j=1

j − k > n + 4
k

X

j=1

j + r′(k + 1)

which is a contradiction since0 ≤ r′. Hence, we can conclude thatk′ ≤ k − 1. If k′ ≤ k − 2, then
4k′ + r′ < 4k − 2 follows immediately. Otherwise, ifk′ = k − 1, then

n + 4
k

X

j=1

j − k > n + 4

k−1
X

j=1

j + r′k

4k − k > r′k

3 > r′

which impliesr ≤ 2. Therefore,4k′ + r′ ≤ 4(k − 1) + 2 = 4k − 2, which proves claim 1. For claim
2, if 4k′ + r′ < 2(a− 1)− 2, then there is nothing to prove. So assume that4k′ + r′ = 2(a− 1)− 2.
Then we know by Equation(A.11) that also4k + r = 2(a− 1). Sincen is normal fora, b, this implies
that

ab = n +
k

X

j=1

j.

Now

(a − 1)b ≤ ab − 2k − 1 (b ≥ 2k + 1)

= n +
k

X

j=1

j − 2k − 1

= n +

k−1
X

j=1

j + 2k − 1.
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This impliesr′ < 2 by Equation(A.10) applied to(a′, b′) = (a−1, b). This gives us4k′+r′ < 4k−2,
and therefore a contradiction to our assumption that4k′ + r′ = 2(a − 1) − 2. This proves claim 2 for
this case.

B Proofs for Section 6.2.2
We need some additional notions. LetD be a line number distribution. We say thatD is connectedif
dom(D) = [mindom(D).. max dom(D)]. Let zD

m be an element in dom(D) with ∀z : D(z) ≤ D(zD
m).

We say thatD is monotoneiff

∀z ∈ dom(D) :z ≤ zD
m =⇒ D(z − 1) ≤ D(z)

∀z ∈ dom(D) :z ≥ zD
m =⇒ D(z) ≥ D(z + 1)

We define thecanonical coloringfcan(D) inductively as follows. Let(y, z, n) be a triple of integers.
Then

fy,z,n(x, y′, z′) =

(

1 if x = 0,z = z′ andy ≤ y′ < y + n

0 sonst

fy,z,n is the coloring of rowz, which starts aty and ends aty + n − 1 (i.e., has exactly n colored points).
If dom(D) = {d}, then

fcan(D) = f0,d,D(d)

Otherwise, letm = max dom(D), and letD′ be D except onm, whereD′(m) = 0. Let yD′ be the
y-coordinate of the leftmost colored point offcan(D′) in row m − 1. I.e.,

yD′ =

(

min {y | fcan(D′)(0, y, m − 1) = 1} if D(m − 1) = D′(m − 1) > 0

0 else

Then

fcan(D) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

f0,m,D(m) ⊎ fcan(D′) if D(m − 1) = 0

fy
D′ ,m,D(m) ⊎ fcan(D′) if D(m − 1) − 1 ≤ D(m)

andD(m) ≤ D(m − 1) + 1

fy
D′−1,m,D(m) ⊎ fcan(D′) if D(m) > D(m − 1) + 1

fyD′+1,m,D(m) ⊎ fcan(D′) else

PROPOSITIONB.1
Let D be a line number distribution. Then

xsteps(fcan(D)) = 2|{m | D(m) > 0 ∧ D(m + 1) > 0 ∧ |D(m) − D(m + 1)| ≥ 2}|
+ 1|{m | D(m) > 0 ∧ D(m + 1) > 0 ∧ |D(m) − D(m + 1)| = 1}|

PROPOSITIONB.2
Let D be a line number distribution. IfD is connected, thenfcan(D) is connected and satisfies
#r not overlaps(fcan(D)) = 0. If D is connected and monotone, thenfcan(D) is caveat-free.

PROPOSITIONB.3
Let D be a connected, monotone line number distribution. Letb = max ran(D) anda = |dom(D)|. Then
(a, b) is the frame offcan(D).

In the following, we will consider line number distribution, whose canonical coloring has maximal
number of x-steps within its frame, and cannot be extend without loosing an x-step.

DEFINITION B.4 (Maximal Line Number Distribution)
Let (a, b) be a tuple witha ≤ b such thata is odd, ora 6= b. ThenD

a,b
max3 is defined by

D
a,b
max3(z) =

(

b − 2|⌈a
2
⌉ − z| if 1 ≤ z ≤ a

0 else
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Note that we have excluded the case where we have a frame(a, a) with a even. The reason is just that
in this case, any coloringf of this frame which has maximal number of x-steps (namely2(a − 1)) is not
maximally overlapping (i.e., there is a rowz such that roverlap+(f, z) < |Df (z) − Df (z + 1)|). This
implies that we can reduce this to a smaller frame. Figure 11 shows an example.

PROPOSITIONB.5
Let (a, b) and(a′, b′) be two frames witha ≤ b anda′ ≤ b′ such that

a′ < a ∧ b′ ≤ b or a′ ≤ a ∧ b′ < b.

Then num(Da′,b′

max3 ) < num(Da,b
max3).

PROPOSITIONB.6
D

a,b
max3 is a line number distribution withdom(D) = [1..a]. Furthermore, it is monotone.

PROOF. By definition, we know thatDa,b
max3 is a functionDa,b

max3 : Z → N. We have to show thatDa,b
max3 ≥ 1

for every1 ≤ z ≤ a. Since|⌈a
2
⌉−z| is monotone decreasing inz from 1 to ⌈a

2
⌉, and monotone increasing

in z from ⌈a
2
⌉ to a, it suffices to show thatDa,b

max3(1) ≥ 1 andD
a,b
max3(a) ≥ 1. ForDa,b

max3(1), we have

D
a,b
max3(1) = b − 2(⌈a

2
⌉ − 1) ≥ b − 2(

a + 1

2
− 1)

= b − (a + 1 − 2) = b − (a − 1)

≥ 1 (a ≤ b)

ForDa,b
max3(a), we have two cases:

1. a odd. Then

D
a,b
max3(a) = b − 2(a − ⌈a

2
⌉)

= b − 2a + 2
a + 1

2
= b − a + 1

≥ 1 (a ≤ b)

2. a even. Then we know thatb is odd (since(a, a) with a even was excluded in the definition of the
lemma). Hence,b ≥ a + 1. Now

D
a,b
max3(a) = b − 2(a − ⌈a

2
⌉)

= b − 2a + 2
a

2
= b − a

≥ 1 (a + 1 ≤ b)

Now we want to find for a givenn a minimal frame(am, bm) such that(am, bm) has maximal number
of x-steps. For this purpose, we define a set of tuples

M =
[

{{(n, n), (n, n + 1), (n, n + 2), (n + 1, n + 2)} | n odd}

Note thatM is totally ordered by the lexicographic order on tuples. Hence, we can define MinF(n) to be the
minimal element(a, b) ∈ M such that num(Da,b

max3) ≥ n. Figure 10 gives an example of the corresponding
canonical colorings with maximal number of x-steps.

PROPOSITIONB.7
Let (a, b) be a frame such thatDa,b

max3 is defined, and letn be a number. Then(a, b) is normal forn iff

num(Da,b
max3) ≤ n.
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PROOF. If a is odd, then letk be⌈a
2
⌉− 1. Then2k +1 = a. Furthermore, we know thatDa,b

max3(z)+2 =

D
a,b
max3(z+1) for every linez with 1 ≤ z ≤ k = ⌈a

2
⌉−1. Similarly, we getDa,b

max3(z)−2 = D
a,b
max3(z+1)

for every linez with ⌈a
2
⌉ = a − k ≤ z < a. Hence,

ab = num(Da,b
max3) + 2

k
X

j=1

j + 2

k
X

j=1

j.

This impliesk = edge(b, num(Da,b
max3), a), 4k = 2(a − 1) andab = num(Da,b

max3) + 4
Pk

j=1 j. This

implies that num(Da,b
max3) is normal for(a, b). The rest follows from Lemma 6.14.

The case fora even is analogous.

LEMMA B.8
Let (a, b) with a odd anda ≤ b + 1, or a even anda ≤ b + 2. Then

∀1 ≤ z ≤ a : D
a,b
max3(z) = D

a,b−1
max3 (z) − 1

Furthermore, for anyn such that num(Da,b−1
max3 ) < n ≤ num(Da,b

max3), there is a connected, caveat-free
coloringf such that xsteps(f) = 2(a − 1), frame(f) = (a, b) and num(f) = n.

PROOF. The first claim follows by the definition ofDa,b
max3 if D

a,b−1
max3 is defined, which is the case for all

frames considered in the lemma.
For the second claim, we will construct a line number distribution D such thatfcan(d) has the required

properties. By the first claim, we get num(Da,b
max3(z)) − a = num(Da,b−1

max3 (z)), which implies by the

definition ofn that num(Da,b
max3(z)) − n = d < a.

• a odd. Letd1 = ⌈ d
2
⌉ andd2 = d − d1. Thend2 ≤ d1. Sincea is odd andd < a, we get

d1 ≤ a − 1

2
< ⌈a

2
⌉ (B.1)

Furthermore,

a − d2 + 1 ≥ a − d1 + 1 (B.2)

≥ a − a − 1

2
+ 1 =

2a − a + 1 + 2

2
> ⌈a

2
⌉.

We defineD by

D(z) =

8

>

<

>

:

D
a,b
max3(z) − 1 if 1 ≤ z ≤ d1

D
a,b
max3(z) − 1 if a − d2 < z ≤ a

D
a,b
max3(z) else

By (B.1) and(B.2), D is well-defined and satisfies num(D) = n. We have to show thatfcan(D)

has frame(a, b). By the first claim, we get dom(D) = dom(Da,b
max3) = [1..a]. Furthermore,(B.1)

and(B.2) showD(⌈a
2
⌉) = D

a,b
max3(⌈

a
2
⌉) = b. SinceD is connected and monotone, this shows that

fcan(D) has frame(a, b) by Proposition B.3.

• a even. Letd1 = ⌊ d
2
⌋ andd2 = d − d1. Thend2 ≥ d1. Sincea even, we get

d1 <
a

2
= ⌈a

2
⌉

andd2 ≤ a
2

= ⌈a
2
⌉. Now,

a − d2 + 1 ≥ a − a

2
+ 1 > ⌈a

2
⌉.

Then we can proceed analogously to the previous case.
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Now we are able to proof Lemma 6.15.

Proof of Lemma 6.15.
1. a odd andb = a. Then the previous element inM is (a − 1, b). We will show that num(Da,b

max3) =

num(Da−1,b
max3 ) + 1, which implies num(Da,b

max3) = n by the minimality of(a, b). Hence,f
can(D

a,b
max3)

is the coloring we are looking for the first claim. Furthermore,n is normal for(a, b) by Proposition B.7,
which shows the second claim.
To showD

a,b
max3 = D

a−1,b
max3 + 1, note that⌈a−1

2
⌉ = ⌈a

2
⌉ − 1. Hence, we have for all1 ≤ z ≤ a − 1

that

D
a−1,b
max3 (z) = b − 2|⌈a − 1

2
⌉ − z| = b − 2|⌈a

2
⌉ − 1 − z|

= b − 2|⌈a

2
⌉ − (z + 1)| = D

a,b
max3(z + 1)

Hence, num(Da,b
max3) − num(Da−1,b

max3 ) = D
a,b
max3(1). Now

D
a,b
max3(1) = a − 2(⌈a

2
⌉ − 1) (a = b)

= a − 2(
a + 1

2
− 1) = a − (a + 1) + 2 = 1 (a odd)

2. a even andb = a + 1. Then the previous element inM is (a − 1, b). Since⌈a−1
2

⌉ = ⌈a
2
⌉, we get

D
a−1,b
max3 (z) = b − 2|⌈a − 1

2
⌉ − z|

= b − 2|⌈a

2
⌉ − z| = D

a,b
max3(z)

SinceD
a,b
max3(a) = b − 2(a − ⌈a

2
⌉) = b − a andb = a + 1, we get num(Da,b

max3) − num(Da−1,b
max3 ) =

D
a,b
max3(a) = 1. By the minimality of(a, b), this implies that num(Da,b

max3) = n. Hence,f
can(D

a,b
max3)

is

the coloring we are looking for the first claim. Furthermore,n is normal for(a, b) by Proposition B.7,
which shows the second claim.

3. a odd, b > a. By the definition of MinF(n), we get that num(Da,b−1
max3 ) < n. Hence, there exists a

coloring f with frame(f) = (a, b), num(f) = n and xsteps(f) = 2(a − 1) by Lemma B.8, which
shows the first claim. By Proposition B.7, we get that num(Da,b−1

max3 ) is normal for(a, b − 1). By
Lemma 6.14, this implies thatn is normal for(a, b − 1), which proves the second claim.
Finally, we can prove the main theorems.

Proof of Theorem 6.16.Without loss of generality, we can assume thata′ ≤ b′. Then we have to show
that for any caveat-free, connected coloringf with frame(a′, b′), there is a frame(a, b) and a coloringfab

such that(a, b, fab) satisfies the followingConda′,b′,f :

a ≤ a′ ∧ b ≤ b′

∧ n normal for(a, b), (a, b − 1) or (a − 1, b)

∧ (∀n′ : contactsmax(fab, n
′) ≥ contactsmax(f, n′)).

By Lemma 6.12, we can restrict ourself to colorings where #rnot overlaps(f) = 0.
So letf be an arbitrary caveat-free, connected plane coloring thatsatisfies #rnot overlaps(f) = 0,

num(f) = n and frame(f) = (a′, b′). By Proposition 5.7, we know that xsteps(f) ≤ 2(a′ − 1). Fur-
thermore, let(am, bm) be MinF(n), and letfm be the coloring as required by Lemma 6.15 for(am, bm).
Then (again by Lemma 6.15) xsteps(fm) = 2(am − 1), andn is normal for(am, bm) or (am, bm − 1).
We have the following cases:
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1. a′ > am. We have the following subcases:

(a) b′ ≥ bm. Let k = |a′ − am| (note thatk > 0). Sinceam < a′ ∧ bm ≤ b′, we get Surfpl(fm) ≤
Surfpl(f) − 2k. Since xsteps(f) ≤ 2(a′ − 1) and xsteps(fm) = 2(am − 1), we get by Lemma 4.6
that

#4(fm) ≥ #4(f) + k

#3(fm) ≥ #3(f) − 2k

#2(fm) ≥ #2(f) + 2k

#1(fm) ≥ #1(f) − 2k.

This implies∀n′ : contactsmax(fm, n′) ≥ contactsmax(f, n′) by Lemma 6.3. By Lemma 6.15,n is
normal for(am, bm) or (am, bm − 1). Hence,(am, bm, fm) satisfiesConda′,b′,f .

(b) b′ < bm. Sincebm ≤ am + 2, we get

b′ ≤ bm − 1 ≤ am + 1 ≤ a′

Since we have assumeda′ ≤ b′, the only case can be thata′ = b′. Hence,bm − 1 = am + 1,
and thereforebm = am + 2. By definition ofM , this implies thatam is odd, which implies that
a′ = b′ = am + 1 is even.
By Lemma 6.15, case 3 we get thatn is normal for(am, bm − 1) = (a′ − 1, b′). Hence(a′, b′, f)
satisfies conditionConda′,b′,f .

2. a′ = am. We have the following subcases:

(a) b′ ≥ bm. Since xsteps(f) ≤ 2(am − 1) = xsteps(fm) and Surfpl(fm) ≤ Surfpl(f), we know that
(am, bm, fm) satisfies the conditionConda′,b′,f .

(b) b′ < bm. By Lemma 6.15, we get thatn is normal for(am, bm) = (a′, bm) or (am, bm − 1) =
(a′, bm − 1). Sinceb′ < bm, we get by Lemma 6.14 thatn is also normal for(a′, b′), which implies
that(a′, b′, f) satisfies conditionConda′,b′,f .

3. a′ < am. We have the following subcases:

(a) b′ ≤ bm. By Lemma 6.15, we get thatn is normal for(am, bm) or (am, bm−1). Sincea′ < am and
b′ ≤ bm, this implies thatn is normal for(a′, b′) or (a′, b′ − 1) by Lemma 6.14. Hence,(a′, b′, f)

satisfies conditionConda′,b′,f .

(b) b′ > bm. If n is normal for(a′, b′), then(a′, b′, f) satisfies conditionConda′,b′,f .
Otherwise, consider the frame(a′, bm). We have the following subcases:

i. num(Da′,bm
max3 ) ≤ n. If num(Da′,bm

max3 ) = n, then (a′, bm, f
can(D

a′,bm
max3 )

) satisfies condition

Conda′,b′,f .

So assumeDa′,bm

max3 < n. Sincea′ < am ≤ bm, we know thatDa′,b
max3 is defined for allb ≥ bm. Let

bmax ≥ bm be the maximal integer such that num(Da′,bmax

max3 ) ≤ n. By Proposition B.7, we know
thatn is normal for(a′, bmax). By Lemma 6.14, we get thatbmax +1 ≤ b′. Sincea′ < am ≤ bm

andbm < bmax + 1, we can apply Lemma B.8 ton and(a′, bmax + 1). This Lemma will give us
a coloringf ′ such that Hence,(a′, bmax + 1, f ′) satisfies the conditionConda′,b′,f .

ii. num(Da′,bm

max3 ) > n. Then num(Dam,bm

max3 ) > num(Da′,bm

max3 ) by Proposition B.5. We have shown

in the proof of Lemma 6.15, cases 1 and 2, thatam = bm or am even impliesn = num(Dam,bm

max3 ).

Since we are in the sub-case num(Dam,bm

max3 ) > n, this implies by the definition of MinF() that
am ≤ bm − 1. Since we have excluded the casesam = bm andam even,am ≤ bm − 1 implies
that(am, bm − 1) is in M . This implies num(Dam,bm−1

max3 ) < n by the minimality of(am, bm).

Sincea′ < am, we know thatDa′,bm−1
max3 is defined. By Proposition B.5, we get num(Da′,bm−1

max3 ) <

num(Dam,bm−1
max3 ) < n. Since we have showna′ < bm − 1 and num(Da′,bm−1

max3 ) < n, we can
apply the proof of the previous case withbm − 1 instead ofbm.
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Proof of Theorem 6.17.By definition, we get

con(f) =

k−1
X

i=1

IC
fi+1

fi
+

k
X

i=1

LCc
fi

.

Let (af
i , b

f
i ) be the frame offi. Then we get by the definitions of LC

ni,a
f
i

,b
f
i

and MIC
ni+1

ni,a
f
i

,b
f
i

that

MIC
ni+1

ni,a
f
i

,b
f
i

≥ IC
fi+1

fi

and

LC
ni,a

f
i

,b
f
i

≥ LCc
fi

.

This gives us

con(f) ≤
k−1
X

i=1

max
n

MIC
ni+1

ni,ai,bi
+ LCni,ai,bi

| aibi ≥ ni

o

+ max
˘

LCnk,ak,bk
| akbk ≥ nk.

¯

By Proposition 6.1, we get

∀(a′
i, b

′
i)∀(ai, bi) : ai ≤ a′

i ∧ bi ≤ b′i =⇒ LCni,ai,bi
≥ LCni,a′

i
,b′

i
(B.3)

Thus, we get
max

˘

LCnk,ak,bk
| akbk ≥ nk

¯

= LCnk,am
k

,bm
k

,

wheream
k

= ⌈√nk⌉ andbm
k

= ⌈ nk
am

k

⌉, which makes up the second summand(6.4) in the inequation of

the theorem.
By the last theorem, we get

∀(a′
i, b

′
i)∃(ai, bi) : ai ≤ a′

i ∧ bi ≤ b′i

∧ ni is normal for(ai, bi), (ai, bi − 1) or (ai − 1, bi) (B.4)

∧ MIC
ni+1

ni,ai,bi
≥ MIC

ni+1

ni,a′

i
,b′

i

.

By Theorem 6.13 we get

∀(ai, bi) : BMIC
ni+1

ni,ai,bi
≥ MIC

ni+1

ni,ai,bi
. (B.5)

Equations(B.3), (B.4) and(B.5) together give us the first summand(6.3) of the inequation claimed in
the theorem.
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