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ABSTRACT:Lattice protein models are a major tool for investigatinmgiples of protein fold-

ing. For this purpose, one needs an algorithm that is gusednto find the minimal energy
conformation in some lattice model (at least for some secg®n So far, there are only algo-
rithm that can find optimal conformations in the cubic latidn the more interesting case of
the face-centered-cubic lattice (FCC), which is more pnelige, there are no results. One of
the reasons is that for finding optimal conformations, oneallg applies a branch-and-bound
technique, and there are no reasonable bounds known foiG@e We will give such a bound

for Dill's HP-model on the FCC, which can be calculated by aaiyic programming approach.

1 Introduction

Simplified protein models such as lattice models are usedvestigate the protein
folding problem, the major unsolved problem in computadidsiology. An important
representative of lattice models is the HP-model, whichbeen introduced by [8].
In this model, the 20 letter alphabet of amino acids (calletiomers) is reduced to a
two letter alphabet, namely H and P. H represéytirophobianonomers, whereas P
represenpolar or hydrophilic monomers. Aonformationis a self-avoiding walk on
the cubic lattice. The energy function for the HP-model dingpates that the energy
contribution of a contact between two monomers-isif both are H-monomers, and
0 otherwise. Two monomers formcantactin some specific conformation if they are
not connected vialbond and the euclidian distance of the positions.i©ne searches
for a conformation which maximizes the number of contactsctvis a conformation
whose hydrophobic core has minimal surface. Just recehtystructure prediction
problem has been shown to be NP-hard even for the HP-modél j@h the cubic
lattice. A sample conformation for the sequence PHPPHHPHdnwo-dimensional
lattice with energy—2 is given in Figure 1. The white beads represent P, the black
ones H monomers. The two contacts are indicated via dastesl i

Forinvestigating general properties of protein-foldioige needs an algorithm which
is guaranteed to find a conformation with maximal number aftacts (at least for
some sequences, since the problem is NP-hard in generahough there are ap-
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FiG. 1. Sample Conformation

proximation algorithms for the HP-model in the cubic lattiy] and FCC [1], the
need of an optimal conformation in this case implies that@carenot use approximate
or heuristic algorithms for this purpose. To our knowledpeye are two algorithms
known in the literature that find conformations with maximamber of contacts (op-
timal conformations) for the HP-model, namely [11, 2]. Batbe some variant of
Branch-and-Bound.

The HP-model is original defined for the cubic lattice, busieasy to define it for
any other lattice. Of special interest is the face-centerddc lattice (FCC), which
models protein backbone conformations more appropridtedyn the cubic lattice.
When considering the problem of finding an optimal confoioratthe problem oc-
curs that no good bound on the number of contacts for thedan&ered cubic lattice
is known, in contrast to the HP-model. Both known algorittanfinding the optimal
conformation search through the space of conformatiomgukie following strategy:

o fix one coordinate (say x) of all H-monomers first

e calculate an upper bound on the number of contacts, gived fiakies for the
H-monomers.

An upper bound can easily be given in the case of the HP-mibdely the number
of H-monomers are known in every plane defined by an equatierc (called x-layer
in the following). For this purpose, one counts the numbdddfcontacts and HH-
bonds (since the number of HH-bonds is constant, and we dcanetin which layer
the HH-bonds actually are). Let us call this generalizedtacts in the following.
Then one distinguishes between generalized contactswvathix-layer, and general-
ized contacts between x-layers. Suppose that the posiiicngied by H-monomers
are given by black dots in Figure 2. Then we have 5 H-mononmelayierz = 1,
and 4 H-monomers in = 2. Furthermore, we have 4 generalized contacts between
the layerz = 1 andz = 2 (straight lines), 5 contacts within = 1 and 4 contacts
within = 2 (dashed lines). This coincide with the upper bound givenfdihromer
inz = 1, and 4 H-monomers im = 2, which is calculated as follows. For the number
of interlayer contacts, we know that every interlayer cont@nsumes 1 H-monomer
in every layer. Hence, the maximal number of interlayer aotstis the minimum of
the number of H-monomer in each layer, in this case(5,4) = 4. The upper bound
for the layer contacts is a bit more complicated, since isuke concept of a frame.
Consider some layer with H-monomers. Let. = [\/n] andb = [2]. (a,b) is
the minimal rectangle (frame) aroumndH-monomers. Then the maximal number of
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FIG. 2. Layer and Interlayer Contacts

contacts within this layer is upper bound By — a — b. In our example, we get for
the first layem = 5, a = 3 andb = 2, and the maximal number of layer contacts is
thenl0 — 3 — 2 = 5, as it is the case in our example. For= 4, we geta = 2, b = 2
and the maximal number is thén- 2 — 2 = 4, as in our case. For details, see [11, 2].

For the face-centered-cubic lattice (FCC) is no similarrmbkinown, and there is
no trivial transfer from the cubic lattice. The bound for F@@ice is harder, since the
interlayer contacts are much more complex to determine.r&ason is that the FCC
has 12 neighbors (position with minimal distance), whethascubic lattice has only
6. Thus, in any representation of FCC, we have more than oigalnar in the next
x-layer for any poinf, which makes the problem complicated. Such an upper bound
will be given in this paper.

2 Preiminaries

Given vectorsui, .. ., vy, the lattice generated by, .. ., v, is the minimal set of
points L such thatvii,v € L, bothd + ¢ € L and@ — ¢ € L. An x-layerin a
lattice L is a plane orthogonal to the x-axis (i.e., is defibgdhe equation: = ¢)
such that the intersection of the points in the plane and tfiretpof L is non-empty.
The face-centered cubic latticeshort FCC, see [5]) is defined as the lattibg =
{@) | (z) € Z3andx + y + z is ever}. For simplicity, we use a representation
of D3 that is rotated by) = 45° along the x-axis. Since we want to have distance 1
between successive x-layers, and unit distance betweghbwis in one x-layer, we
additionally scale the y- and z-axis, but leave the x-axiis @s A partial view of the
lattice and its connections, as well as the rotated latigivien in Figure 3. Thus, we
can define the lattic®?, to be the lattice that consists of the following sets of point
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FiG. 3: In the first figure, we have shown two x-layers (where thexis is shown as

the third dimension). The dark grey circles are the lattioa{s in the first x-layer

(where the dark grey, solid lines are the nearest neighburexiions). The light grey
circles are the points in the second x-layers (where the tighy, dashed lines are
the nearest neighbor connections in the second layer). ok bnes indicate the

nearest neighbor connections between the first and the deetayer. The second
figure shows FCC after rotation kiy°

in real coordinates:
Dy = {(y) | (z) € 7* andx ever
xr x 3
W {(gig;g) | (Z) € Z° andz odd}.
The first is the set of points in even x-layers, the secondahefpoint in odd x-layers.

A generator matrix foD5 is given in [3].
The setVp, of minimal vectors connecting neighborsiin, is given by

0 0 +1
S (CARETH(E )3
3 0 +1 +0.5
The vectors in the second set are the vectors connectinglnig in two different
successive x-layers. Two poiniandp’ in Dj areneighborsf p'— p’ € Np, .

2.1 Colorings

We are interested in the positions occupied by H-monomesatime conformation of
the HP-model. For this purpose, we introduce the concepblafrings (where the
coloredpoints are the points occupied by H-monomers).

DEFINITION 2.1 (Coloring)
A coloringis a functionf : Df — {0,1}. We denote with pointy) the set of all
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points colored byf, i.e.,

points f) = {p'| f(p) = 1}.

With num(f) we denotgpointsf)|. Let f; and f, be colorings. Withf; U f> we
denote the coloring with

pointg f) = pointg f1) U pointg f2).

Two coloringsfi, f» aredisjoint if their set of points are disjoint,f; & fo denotes
the disjoint union of colorings. Given a colorirfg we define thewumber of contacts

con(f) of f by con(f) = s{(p.7") | f(§) = 1= f(7') A (P~ ) € Np, }-

In the following, we will split a complete coloring into its composition of color-
ings of the single x-layers that contain points colored’byhe aim is to give separate
bounds for layer and interlayer contacts. For this purpeseintroduce colorings,
where the colored points are contained in one x-layer.

DEFINITION 2.2 (Plane coloring)
A coloring f is called acoloring of the planer = ¢ if f(z,y,2) = 1 impliesxz = c.
We say thaff is aplane coloringf there is ac such thatf is a coloring of plane = c.
We define Surf(f) to be the surface of in the planer = ¢, i.e.,

)b

Surhu(f) = H(@.7) | (5= 1) € Noy A F(B) = 1A S(0) =0A Ty, 0 = (

ne o

With min, (f) we denote the integer

min{y | 3z : f(c,y,2) = 1}.
max,(f), min,(f) andmax,(f) are defined analogously.

min, (f), max,(f), min,(f) andmax,(f) defines the minimal rectangle that con-
tains all points colored by the plane colorilig

3 Description of the Upper Bound

Our purpose is to give an upper bound on the number of contgigen thatn, H-
monomers are in the x-layer defined by= ¢. Thus, we need to find a function
b(nq,...,ng) with

b(ny,...,ng) > Inax{ con(f)

f:flw...wfk,we{l,...,k}:fcisa}

coloring of planer = ¢ and nunff.) = n.

To developb(n, ..., ni), we distinguish between contagis p’) where bothp'and
P’ are in one x-layer, and contad{g p’) wherep'is in an layer: = ¢, andp’ is in the
layerxz = ¢ + 1. The contacts within the same x-layer are easy to bound bgding
the surface Sugf(f.). Since every pointin layet = ¢ has four neighbors, which
are either occupied by an colored point, or an uncoloredtpaia get4 - num(f) =
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FiG. 4. H-Positions in FCC

Surf,(fe) + 2 - LC, whereLC'is the number of layer contacts. The hard part is to
bound the number of contacts between two successive layers.

For defining the bound on the number of contacts between teaessive layers, we
introduce the notion of aftpoint, where; = 1, 2, 3, 4. Given any pointint = ¢ + 1,
then this point can have at mosheighbors in the plane = ¢. Let f be a coloring
of the planer = ¢. Then a poinf'in planexz = ¢ + 1 is ani-point for f if it has
neighbors in plane = ¢ that are colored by (wherei < 4). Of course, if one colors
ani-pointin planer = ¢+ 1, then this point generatégontacts between layer= ¢
andx = ¢ + 1. In the following, we will restrict ourself to the case where- 1 for
simplicity. Of course, the calculation is independent & ¢hoice ofc.

Consider as an example the two colorirnfgof planez = 1 and f, of planex = 2
as shown in Figure 4f; consists of 5 colored points, arfg of 3 colored points. Since
f2 colors onet-point, one3-point and one-point of f, there are) contacts between
these two layers. It is easy to see that we generated the muistots between layers
x = 1 andxz = 2 by first coloring thet-points, then the points and so on until we
reach the number of points to be colored in layet 2.

For this reason, we are interested to calculate the maxioraber ofi-points (for
1 = 1,2,3,4), given only the number of colored pointsin layerz = 1. But this
would overestimate the number of possible contacts, sireevauld maximize the
number of4-, 3-, 2- and 1- point independently from each other. We have found a
dependency between these numbers, which requires to fixdiaéesgth(a, b) of the
minimal rectangle around all colored points in layet 1 (called theframé. In our
example, the frame i§3,2). Of course, one has to search through all “reasonable
frames” to find the maximal number of contacts between thelaéyers. This will be
treated in a later section.

Denote withmax;(a, b, n) the maximal number of-points in layerz = 2 for any
coloring of layerx = 1 with n-colored points and framg, b). Then we have found

INote that this might not necessarily be the coloring withrtreximal number of contacts, since we might loose contadtsimihe layer
x = 2; although this could be included in the calculation of theembound, we have excluded this effect for simplicity.
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that

mazy(a,bn)=n+1—a—> maxz(a,b,n) =2a+ 2b— 20 — 4

mazs(a,b,n) = mazxi(a,b,n) ={+ 4.
The remaining part is to find = maxs(a, b, n), which is a bit more complicated.
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FIG. 5: Colorings and corresponding, 3- and 2-points (l-points are not shown).
4-points are indicated b5, 2-points by, and the singl&-point by ax.

Before we will do so, let us explaimaz4(a, b, n) andmazs(a, b, n) first. Consider
the left coloring in Figure 5, which is a coloring that comple fills its frame (with
a = 6 andb = 9). This coloring containg: = 54 points. If one shifts this:
colored points by1, —0.5,0.5), than one gets all-points except the — 1 “missing”
4-points in the bottom row, the — 1 “missing” 4-points in the last column, and the
one “missing” 4-point in the right bottom corner. This makes

n—(a—1)—(b-1)—-1=n+1l—-a-b

as given bymax4(a, b, n). For the 2-points, we hax&gz +2b— 4 many 2-points, where
the —4 stems from the “missing” 2-points at the 4 corners (whichiafact 1-points).

Now the interesting part is that basically, this relatioesloot change if we remove
some colored points. Consider the right coloring in Figure/bich has four colored
points deleted. By removing four colored points, we remaug #-points. Hence,
we have again that the number of 4-pointsis- 1 — a — b. For the 2-points, four
2-points have been deleted in the top row, and one additipaint has been deleted
in the first column. But the four deleted 4-points now haveodnee 2-points except
one, which has become a 3-point. One could say that the 3-pagbeen generated
by merging two moved 2-points (one from the top row, and oamfthe first column).
Hence, we have that the number of 2-points is

2a+2b—4— 2/,

where/ is the number of 3-points.
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FIG. 6. Uncolored diagonals and 3-points, which are indicatee b

Now let’s turn to the 3- and 1-points. For findifg= maxs(a, b, n), we define
k = edgéa,b,n) = max{k € N | ab — 4@ > n}, andr = ext(a,b,n) =

ETICET . .
L“b‘lkiflj. The geometric interpretation bf= edgéa, b, n) andr = ext(a, b, n)

is the following. k is the maximal number of diagonals that can be left uncolared
all corners of the frame (when distributing the uncoloreatdinals equally on all cor-
ners).r < 3is the number of times that we can add one additional uncokisggonal.

To give an example, consider the coloring in Figure 6 with= 38, a = 6 and
b = 9. Thenk = edgda,b,n) is 2. That means, that in each corner we can have at
least 2 diagonal lines that are uncolored= edgéa, b, n) is 1, which means that in
one corner, we can add a third uncolored diagonal.

Now the interesting part is, that the number of uncoloredyaiial determines the
number of 3-points. Consider the left upper corner. Theeet@o uncolored lines,
and two 3-points are generated in this corner. The sameaarlablds for all other
corners as well. We will show that we can define the bound ontineber of 3-points

by

dk+r ifdk+r<2(a—1)

mazs(a,b,n) = {2(@ —1) else

(assuming without loss of generality thak b).

For the number of-points, it is easy to see that every corner produces onerit-po
For every 3-point, one additional 1-point is generated chigives? + 4, where/ is
the number of 3-points.

3.1 Plan of the Paper

In Section 4, we will determine the number of points havirpssible contacts, given
some parameter of the coloringof planex = ¢. The parameters are the surface
Surf,; (f), and the number of points withpossible contacts.

In Section 5, we will then show how we can determine the nurabpoints having
3 possible contacts, given Syrff). Surf, (f) is determined by the minimal rectangle
(called frame) around all points colored lfy Thus, we get an upper bound for both
the contacts in the plane = ¢, and the contacts between= ¢ andx = ¢ + 1 by
enumerating all possible frames fér Of course, we cannot enumerai frames.
Thus, we introduce in Section 6 a concept of “sufficienthefiliframes”, i.e. frames
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that are not too big for the number of points to be colored withe frame. These
frames will be called normal. Then, we prove that it is sufitito enumerate only
the normal frames to get an upper bound. In fact, this is thetremlious part of
the construction. In Section 7, we combine the results in radyc programming
approach, which allows to calculate the upper bound for tmaber of contacts in
polynomial time. We will compare our bound with the triviat bound used so far in
the literature.

4 Number of Pointswith 1,2, 3, 4-Contacts

In the following, we want to handle caveat-free, connect@drings, which we will
define first.

DEFINITION 4.1 (Path, connected coloring) .
Let f be a coloring of the plane = ¢, and letp’ andp’ be two points such that

f(P) = 1= f(p'). A path betwee andp’ in f is a list of points

-
3 /

P=pi...Pn =D

such that

i (pamr) e fa ()= (8) = ()= ()
A coloring f is connectedf for any two pointsy andp’ with f(7) = 1 = f(p/), there

is a path betweepiandy’ in f.

DEFINITION 4.2 (Caveats)
Let f be a coloring of plane = ¢. A horizontal caveat inf is a k-tuple of points

(pi,...,pr) such that
vi<j<ki(pii=p+ (1))

fP) =1 = f(pr)
Vi<j<k:f(p;)=0

oo

A vertical caveat in fis defined analogously satisfying

. N - 0
Vi<j<k: (pj+1 =pj+ (?))
instead. We say that contains acaveatif there is at least one horizontal or vertical
caveatinf. f is calledcaveat-fredf it does not contain a caveat.

For calculating the number of contacts, we distinguish fpiaae coloringf the
points in the next and previous plane according to the numbeontacts that can be
achieved by coloring the specific point.
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DEFINITION 4.3

Let f be a coloring of plane = ¢. We say that a poing is a4-point for f if p'is
in planex = ¢+ 1 orz = ¢ — 1 andp has 4 neighborgi, ..., p; in planex = ¢
with f(p1) = --- = f(pa) = 1. Analogously, we defin8-points,2-points andl-
points. Furthermore, we defiged._1(f) = |{p’| p'is a4-pointfor f inx = ¢ — 1}|.
Analogously, we defingt4.1(f) and#i.+1(f) fori = 1,2, 3.

Trivially, we get for any coloringf of planex = cthatVi € [1..4] : #i._1(f) =
#i.+1(f). Hence, we define for a coloringof planex = cthat#i(f) = #i.—1(f)
(= #i.41(f)) for everyi € [1..4]. For calculating the number afpoints for a
coloring f of planex = ¢, we need the additional notion of an x-steps for An
x-stepf consists of 3 points i = ¢ that are sufficient to characterize one 3-point.
Furthermore, we need to now whether the lines of the colarirgglap or not.

DEFINITION 4.4 (X-step)
Let f be a coloring of plane = ¢. An z-step forf is a triple(p1, p2, p3) such that

f(p1) =
f(p2) = 1= f(p3)
p1—p2 == (g)

With xsteps /) we denote the number afsteps off.

DEFINITION 4.5 (Overlaps)
Let f be a coloring of plane = ¢. We define

_J fle,y,2) =1A fle,y,z+1) =1
rooverlap (f, z) = H ‘ A Fy(fle,y,z) =1)A3y(fle,y,z+1)=1) H
#r_notoverlapgf) = |{z | min,(f) < z < max,(f) Aroverlap (f,2) = 0}
LEMMA 4.6

Let f be a connected, horizontal caveat-free coloring of theeplar= ¢. Then the
following equations are valid:

#4(f) = num(f)+1-— %Surfpl(f) + #r_notoverlapsf) 4.1)
#3(f) = xstep$f) — 2#r_notoverlapsf) (4.2)
#2(f) = 2num(f) — 2#4(f) — 2#3(f) — 2 — #r_.notoverlapsf) (4.3)
#1(f) = #3(f) + 4+ 2#r_notoverlaps$f) (4.4)

= xstep$f) +4
PrROOF. Claims(4.1), (4.2) and(4.4) are proven by induction on the height pf

base case For the base case thithas heightl, we know that we haveét4(f) = 0,
#3(f) =0, #1(f) = 4 and that Sugfi(f) = 2n + 2. Thus, claimg4.1), (4.2)
and(4.4) hold.
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induction step Let f be a plane coloring of heiglit + 1. Let the coloringf’ be f
with the rowz = max, (f) deleted.

Claim (4.1): Let n,. be the number of points introduced in the last line=
max. (f)in f. Letr = r_overlap" (f, max.(f) — 1). We have two cases:
1.7 = 0. Thisimplies Surf;(f) = Surf,; (') +2n,+2. Furthermore#4(f) =

#4(f') and

#r_not overlapsf) = #r_notoverlaps$f’) + 1.

Thus we get by induction hypotheses
#4(f) = #4(f)
=num(f’)+1— %Surfpl(f’) + #r_notoverlap$f’)

= (num(f) —n,)+1— %(Surtpl(f) —2n, —2)
+ (#r_notoverlap$f) — 1)

=num(f) +1-— %Surfpl(f) + #r_notoverlapsf)

2.7 > 0. This implies Surf;(f) = Surf,(f') + 2(n, — r) + 2. Furthermore,
#4(f) = #4(f") + (r — 1) and #tnotoverlap$f) = #r_notoverlap$/’).
Thus we get by induction hypotheses:

#4(f) = #4(f") + (r = 1)

=num(f’)+1— %Surtpl(f’)
+ #r_notoverlap$f’) + (r — 1)

= (nUm(f) — ) 1= 5 (SUM(f) — 2y — 1) ~2)
+ #r_notoverlaps$f) + (r — 1)

1
=num(f) —n,+1— §Surfpl(f) +n,—r+1
+ #r_notoverlaps$f) +r — 1

=num(f) — %Surtpl(f) + 1 + #r_notoverlapsf)

Claims (4.2) and (4.4): We have listed in Figure 7 all cases of how the last two
lines of f can overlap (or not). In any case where we have an overlap thiee
introduction of an x-step between the last two lines yieldg ian additional
3-point and an additiondl-point.

If there is no overlap between the last two lines, then thiexéveo x-steps (since
f is connected). But these introduce no additighaloints, but two additional
1-points.
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For Claim(4.3), we first note that the sum of contacts of 4] 3-, 2- and1-points
must yield4n, since this is the number of contacts that can be achievdtttiase
points are filled in the next plane. Hence,

242(f) = 4n — 4#A(f) — 343(f) — 1#1(f)
=dn — 4#4(f) — 3#3(f) — (#3(f) + 4 + 2#r_notoverlapgf))
= 4n — 4#4(f) — 4#3(f) — 4 — 2#r_notoverlap$yf)).

This gives

#2(f) = 2n — 2#4(f) — 2#3(f) — 2 — #r_notoverlapsf)).
|

We will show later in Lemma 6.12 that it is sufficient to coreicdbnly the case
of plane colorings, where successive colored lines ovelllaprinciple, this lemma
can be used to show that our bound is even valid for all caveateolorings (thus
skipping the additional condition that the coloring mustdomnected), albeit this is
not explicitly proven in this paper.

COROLLARY 4.7
Let f be a coloring of the plane = ¢ with the property that #not.overlap$/) = 0.
Then

HA(f) = n4l- %Surfpl(f) (4.5)
#3(f) = xstepsf) (4.6)
#2(f) = 2n—2#4(f) —2#3(f) — 2 (4.7)
#1(f) = #3(f) +4 (4.8)

= xstep$f) +4

With this corollary, we need only to bound Syff) and xstep&f) (which is a
bound on the number Gfpoints) to calculate bounds on the numbedof3-, 2- and
1-points.

5 Bound on the Number of 3-Points.

Given a plane coloring’, then we denote with frani¢) the pair(a, b), wherea =
max;(f) — min.(f) + 1 andb = max,(f) — min,(f) + 1. « is called theheight

of f, andb is called thewidth of f. The frame gives us the possibility to calculate a
lower bound on the surface of a plane coloring, which is thea@per bound on the
layer contacts. We need more information about a coloriag the frame to generate
a bound for xstedd’), which will be captured by the notion of a detailed frame. The
formal definition will be given later. In principle, the déd&d frame just counts for
every corner, how many diagonals we can draw (starting frieencorner) without
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©) O
®---0
®:---0

1-point f 1-point f’

;o . o ‘e - o;
® -0 . .? [ J ®:--0
1-point f’ 1-point f’ 1-point f’ 1-point f’
80 LS OO O. [ .g
®:---0 ?. e @
1-point f' 1-point f’ 1-point f 1-point f’
;.. .; g.............g
[ ) o - o - [ ) ®:---0
1-point f’ 1-point f’ 1-point f 1-point f
OO . .g g. <. .O
® -0 ®:-:--0

1-point ' 1-point f

1-point ' 1-point f

FIG. 7: Cases for claims 4.2 and 4 ¥points for f are indicated by0, 2-points for f
by O, and3-points forf by ©. We have indicated all-points for f’, and have shown
only those2-points for f which have beef-points for f’. Note that some of them are
also1-points for f, other change into 2-point or 3-point for f.
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touching a point that is colored bf. E.g., consider the following plane colorirfg.
given by the black dots:

ex:

Note that there are 8 positions in the next layer thaBgpeints for this coloring. We
have indicated these points withxa We can draw 3 diagonals from the left-lower
corner, 2 from the left upper, 1 from the right lower, and Xirthe right upper corner.
Note that the number &-points near every corner is exactly the same. We will prove
this relationship later.

The detailed frame of a colorinfjis the tuple(a, b, ip, i1, irb, iru ), Where(a,b)
is the frame off, andi;;, is the number of diagonals that can be drawn from the left-
bottom corner. iy, i, i, are defined analogously. Fgg,, the detailed frame is
(6,9,3,2,1,2). The interesting part is that the the number of diagonalstdriawn
gives an upper bound for the number of points to be coloreap@sition 5.4)andfor
the number of x-steps (Lemma 5.6).

Now we start with the formal definition of a detailed frame.

DEFINITION 5.1 (Corner, inbound vector)
Let f be a coloring of the plane = c. The set otornersC(f) of f is defined by

o) = 3 [ minsr) ) [ ming(r) | [ maxy(r) ) maxy(r) Y L
) { (mmi<f>) | (maxZ<f'>) | ( min. () ) | (ma&ﬂ ) }

We will call these corners},, ¢/, ¢/,, andc/,, respectively. We omif if it is clear

Tu?

from the context. We define for every cornee C/(f) theinbound vectoin” (c) of ¢
in f by

= (§) e - ()

e = () e - ()

In the following, we consider lines (i.e., one-dimensigqradiine subspaceds +
of R?, whereU = Lin(%) is the linear, one-dimensional subspace generated by the
vectorv). We are mainly considering lines which are either paratietither the y-
axis, or the z-axis, or which are diagonal in an x-layer. Tiagdnal ones are defined
as the affine subspaces

Lin (095)—1—{[ or Lin( 05 )—i—ﬁ.
0.5 0.5
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Considering the diagonal lines, then there is for everyeoexactly one diagonal line
which cuts the frame around a plane colorjhig exactly one point (hamely the corner
itself). This leads to the definition of a tangent. We say thihe L = Lin(w) + ¢
intersectswith a coloringf if there is a poinfy € L such thatf (p) = 1.

in(cly)  in(cry)

in(clp)  in(crp)

ZL. Clbf/ \Crb

y

FiG. 8: Corner, inbound vectors and tangents. The inbound keate shown in dark
grey, and the tangents in light grey.

DEFINITION 5.2 (Tangent)
Let f be a plane coloring with fram@;, b). We define théangent vectotaved (c) of
the corner € C(f) of f by

taved (c;) = (92§5) taved (¢, ) = (8(1)?)
taved (c,p) = (8??)) taved (¢.,) = (_(Jg§5) .

Then thetangentta/ (c) in the corner: € C(f) of f is defined by

ta’ (c;p) = Lin(taved () + cup ta’ (c;,) = Lin(taved (c,)) + cru
ta’ (c,4) = Lin(taved (c,4)) + cro ta’ (c,,) = Lin(taved (¢,4)) + cru

Again, we omit thef if it is clear from the context. The above definitions are
summarized in Figure 8.

DEFINITION 5.3 (Detailed frame, characteristics)

The detailed frameof a plane coloringf with frame (a, b) is defined as the tuple

()b, iy, i1, Ly, if,), wherei! for j € {Ib,lu,rb,ru} is the minimal integer such

that tgc;) + zj -in(c;) intersects withf. If f is clear from the context, we omit it.
Let I=(ix)}_, beiw, i1, irs, i, Ordered by size. Thehis called theedge charac-

teristicsof f. Thecharacteristicof plane coloringf is a triple(a, b, I), where(a, b)

is the frame off, and! is the edge characteristics.
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PROPOSITIONS.4

Let (a,b,i1,142,13,174) be the detailed frame of a plane colorifig Then nunif) <
4 ij i]‘Jrl

ab— 3, Mg,

DEFINITION 5.5 (Diagonal caveat)

A diagonal caveain f is a k-tuple of pointspi, . .., pi) of Dj with k£ > 3 such that

. - . 0 _ - . 0
V1§j<l€i(pj+1:pj+(%)) \% V1§,7<k:(pj+1:pj+(}1)>

fy) =1=f(k)
Vi<j<k:f(p;)=0

The number of diagonal caveatsfins denoted by diagcay)

The nextlemma gives us a good bound on the numb&ipaiints of a plane coloring
f, given its edge characteristics. Recall the above exanghdeing f.. with detailed
frame(6,9, 3,2, 1, 2). Since the coloring does not have any diagonal caveatsgttte n
lemma will show that xstefg) is given by3 + 2 4+ 1 + 2 = 8, as we have indicated.

LEMMA 5.6
Let f be a connected, caveat-free coloring of the plane ¢ which has a detailed
frame(a,b,i1,12,13,14). Then

xstepsf) = Y i; —diagcayf).

jell..4]

[ <D—p2

Py

[

FIG. 9. Points considered in the proof of Lemma 5.6

P,

PROOF It is sufficient to prove the lemma for the special case thditas the de-
tailed frame(a, b, i3, 0,0, 0). The reason is just that from any connected, caveat-free
plane coloringf we can generated four coloringf, f2, f3, f4) with detailed frames
(al, b1,i1, 0,0, O) . (a4, b4,0,0,0, iru) such that

#3(f)= D #3(1)).

jel..4]
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We prove the caséu, b, i;,0,0,0) by induction. The base cases= b = 1,
a = 2,b=1anda = 2 = b are trivial. For the induction step, lgt be a plane
coloring with detailed framéa, b, i3, 0,0, 0) such that(a,b) > (2,2). If i, = 0,
then#3(f) = 0 and diagcayyf) = 0.

Otherwise letf’ be generated fronfi by deleting the first column. l.e.,

Flory,2) = {O if y = min,(f)

f(z,y,2) else

Thenclfb/ =+ ((1)) =+ ( 0.5 ) + (095) . Hence,
0 0.5

5
=tal(c},) +1-inf(c},), (5.1)

which implies that for any: > 0

ta”’ (c],) + (k—1)-inf"(¢],) =ta (c¢}) + k- inf(c])). (5.2)
Since for anyk with k < i, ta/ (c/;) + k-in/ (¢],) does not intersect witlfi, we know
that f” has a detailed fram, b — 1,14},,0,0,0) with ij, > i;, — 1.

Let .
ﬁminy = ( min;:l(f) )

be the point withz = min{z’ | f (min(;(f)) = 1}. Sincef has detailed frame

min. (f) max.

(a,b,i1,0,0,0), we know thatp; = (mi}Xy(-ﬂ) andpy = f mafo;) satisfy
f(p1) =1 = f(p2). Sincef is caveat-free, this implies that we hafés) = 1 for
p3 = (maxz(f)). Again sincef is caveat-free, this implies that we hafe;) = 1,
where

p_zl = (minygf)JFl) .
Let
N ¢, N 0
5 = (m1n§£j1)+1) = pminy + (J_Fi)

Figure(9) shows the different points considered in the proof.
We distinguish the following two cases for the differentarags of pointps:
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1. f(ps) = 1. Then

diagcay f) = diagcayf’). (5.3)
Furthermore, eithef,,.,,, is an element of t(c},) + iy, - in/ (¢}, ), which implies
that p; is an element of tfé(clfb) + i - inf(c{b), Of Pmin, 1S NOt an element of
ta/ (cf,) + i - inf(c},). In the latter case, there must bé a iy, With Fyin, €
tal (¢},) +k-inf (¢},). Then there must be another pgint= (g) with f(p/) = 1,
y # min,(f) andp’ € ta’(c},) + i - in?(c},). In both cases there is a point in
points f) N (ta/ (¢],) + i - in’ (¢}, )) with an y-coordinate different fromuin,, (f).
Hence, this point is contained iff, which implies that this point is an element
ofta’’ (c},) + (i, — 1) - in/’(¢f,) by Equation (5.2). Therf’ has detailed frame
(a,b—1,4—1,0,0,0). Since(ps — (g) , D5, Pmin,, ) 1S @Nn X-step inf but not in
/', we get

#3(f) = #3(f") +1

Then
#3(f) =#3(f") + 1
= [(iy, — 1) — diagcavf’)] + 1 (Ind. Hyp.)
= iy, — diagcay f). (by (5.3))
2. f(ps) = 0. Since there is no x-step betwegn;,,, andps, we get
#3(f) = #3(f). (5.4)

We divide this case into two sub-cases:
(@) Pmin, is an element of a diagonal caveat fof Then we know that there must

be a pointy € taf(clfb) + i - inf(c{l;) with f(p) = 1 which has an y-coordinate
different frommin, (f). Hence,f’ has the detailed frame

(a,b—1,ip—1,0,0,0)

Since we have removed one diagonal caveat by deleting theditsnn (namely
the one starting withp/,,;,,, ), we get

diagcayf) — 1 = diagcayf’). (5.5)
Then
#3(f) = #3(f") (by (5.4))
— (i — 1) — (diagcay ")) (Ind. Hyp.)
= (ip — 1) — (diagcayf) — 1) (by (5.5))

= iy, — diagcayf)
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(b) Prnin, is not an element of a diagonal caveatfofThen
diagcay f) = diagcayf’). (5.6)

Furthermorep;,,;,, must be the only element ofﬁéc{l;) + i - inf(clfb) colored

by f. Thenp} is an element of t%(cﬁ) +(ip+1)- inf(c-lfb) and is colored black
by f’. Hence, we know that’ has the detailed frame

(a, b— 1, ilb, O, O, 0)

Then
#3(f) = #3(f") (by (5.4))
=iy, — diagcay f’) (Ind. Hyp.)
= iy — diagcay f). (by (5.6))
[ |

A first overall bound on xsteg$) is given in the next proposition. This holds also
for the pathological cases, which will be excluded later. drenprecise bound will be
given in the next section.

PROPOSITIONS.7
Let f be a caveat-free coloring of plane= ¢ with frame(a,b). Then xstepsf) <
2(min(a, b) — 1).

PROOEF Let f be a coloring of planee = ¢. We will first show that xstefgg) <
2(a — 1) by induction ona. For the base case I¢tbe a coloring of height. Then
xstepsf) = 0. For the induction step, let be a plane coloring of heiglat+ 1. Let
1/ be f with the last row deleted. Then every x-siep, p2, p3) in f’ is also an x-step
in f. On the other hand, an x-stépy, p2, p3) for f is an x-step forf” iff both p, and
ps are not in the last row. Thus,

xstepsf) = xstepsf’)

. { (P1,p2,p3) | (P1, P2, p3) is an x-step forf, ) H
: = Y = U
B v = (2 )) A= ()
" |{ (p1,p2,p3) | (p1,p2,p3) Isan x-stcep forf, . }|
: - Y = E
Jy2, Y3 : p2 (maxz(zf)_l) A D3 (max:(f))
Let
Y = mindy | f(e,y,max.(f)) =1} - 1
yho = max{y | f(c.y, max.(f)) =1} +1
yl,y =min{y | f(c,y, max.(f) —1) =1} — 1

y'f;/g =max{y | f(c,y, max,(f) —1) =1} +1
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Then by the above said and the caveat-freenegs tife only possibilities fop; in
the x-steps that are ifibut notinf’ are

C C (& C
1 f 2 f 3 f’ 4 £
= Ym = Ym = Y = Ym

P ( max. (f) ) n ( max- (f) > 7 ( max. (f)~1 ) n < mas. ()1 >

We will show that ifp] is contained in an x-step fof, thenp? is not. The same
holds forp? andpi.
Now if there are pointg} andpi such that(p}, pi, pi) is an x-step inf but not

C

in f/, thenpl = ( Ui ) which implies thatyf/1 < yj;l. But then we get

max, (f)—1 m

fe, yrfn/l, max,(f)) = 0 by the caveat-freeness ¢f which implies thap$ can not
be part of an x-step that is i but not in f’. Analogously, we get that if} is part
of an x-step that is inf but not in f’, thenp?! is not. We get similar results for
p? andp}, which shows that we can add at most 2 x-stepg.inThus, we have
xsteps/f) < xsteps$/f’) + 2, which proves the claim by induction hypotheses.

Analogously, we get xstepg) < 2(b—1), which shows xstefg) < 2(min(a, b)i
1).

6 Number of Contacts

As already mentioned in Section 3, for every colorifigve need to distinguish be-
tween contacts, where both points are in the same layer,@rdats, where the two
corresponding points are in successive layers. The firsaomealledayer contacts
of f (denoted by LG), whereas the later ones are calietrlayer contactsSince we
can split every coloring into a set of plane colorings, werdethis notions for plane
colorings.

6.1 Layer Contacts

Let f be a coloring of plane = ¢. Since all colored points of are in planer = ¢,
we can define theayer contactd C of f in the planer = ¢ by LC} = con(f). We
define LG, 4 » to be the maximum of all LE with num(f) = n, f has frame(a, b)
andf is a coloring of some plane = c.

PROPOSITIONG.1
Under assumption of caveat-free colorings, LG = 2n —a — b.

PROOF Let f be a coloring of an arbitrary plane= c. If f is caveat-free, then the
surface off in the planer = cis 2a + 2b. Now we know that each of the points has
4 neighbors, which are either occupied by another point, & byrface point. Hence,
we getdn = 2LC,, ,p + 2a + 2b.
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6.2 Interlayer Contacts
DEFINITION 6.2 (Interlayer contacts)
Let f be a coloring of plane = ¢, andf’ be a coloringof plane = . If ¢ = c+ 1

(resp.c — 1), then we define thimterlayer contact$C’. to be the number of contacts
between plane = candx = ¢ + 1 (resp.x = ¢ — 1) in the coloringf W f/, i.e.:

I L= - S5 - L +1
ICy = H (') ‘ f@)=1AfW)=1Np =7 = (ig;g) H
Otherwise, we define | > = 0.
Let f be a coloring of plane = ¢. With contactgax(f, n) we denote the maximal
number of contacts between plame= ¢ andx = ¢ + 1 by placingn points in
r=c+ 1. le.

£
[

f"is aplane coloringof = c+ 1 }

contactgax(f, n) = max { with num(f’) = n

LEMMA 6.3
Let f be a plane coloring of = ¢. With §, (k) we denotenax(k,0). Then

contactgax(f,n) = 4 min(n, #4(f))
+ 3min(do(n — #4(f)), #3(f))

4
+ 2min(do(n — Z #i(f)), #2(f))

=3

4
+ 1 min(dp(n — Z #i(f)), #1(f))

=2

PROOF For the claim, it is sufficient to prove that evefymaximizing IC}N satisfies
if there is ak-point 7 with & < 4 and f'(5) = 1, then allk + 1-pointsp’ satisfy
f’(ﬁ’) = 1. Now suppose that this would be not the case. Ldte a coloring of plane
x = ¢+ 1 such that there is B-pointp'with f'(p) = 1, and that there is A+ 1-point
p with f'(p') = 0. Defining

1 if
f”(w,y,z) =40 if
flay,z) else
will give us anf” with num(f”) = num(f’) and
f// . f/
IC: =I1Cy +1,

which is a contradiction to our assumption. [ |
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In addition, we want to show that it is sufficient to considelygplane colorings
which maximize#3( f). We will consider the case #rot overlap$/f) = 0 only. The
case #motoverlapgf) > 0 will be treated later.

LEMMA 6.4
Let f, /' be two plane colorings with fram@:, b), num(f) = n = num(f’) and
#r_notoverlap$f) = 0 = #r_notoverlap$/’) such that#3(f) > #3(f’). Then

Vn' : contactgax(f,n') > contactsax(f, n’).

PROOF Let f and f’ be given as described. By Lemma 6.3, we know that the max-
imal interlayer contacts can be achieved by first occupylhg-positions, then the
3-positions and so on. Lét= #3(f) — #3(f’). By Corollary 4.7, we know that

#(f)—#4(f’)
#3(f) = #3(f') +1
#2(f) = #( ) -2
#1(f) = #1(f") +1

We consider the following cases for the numhéof colored points in the next layer:

1.n/ < #A(f) + #3(f) + #2(f). Since we can color irff as many 4-points and 2-
points as inf’ but possibly more 3-points, we immediately get contagls’, n') >
contactgax(f’,n').

2.4#4(f) + #3(f) + #2(F) < n' < #4(f) + #3(f) + #2(f) + . Letk be
n' — #4(f) + #3(f) + #2(f). Then we have to coldr 1-points forf, whereas
we do not need to use 1-points ffr (where we can use 2-points instead). Thus,
we loosek contacts here. Sinde < [ and we gairl contacts by coloring more
3-points inf than inf’, we again get contacisx(f, n’) > contactgax(f’,n’).

3. H#4(f) + #3(f) + #2(f) + 1 < n’. In this case, we get contagts(f,n’) =
contactgax(f’,n').

Next, we want not to consider a special coloring, but onlyftaene the coloring
has. With MIC'2%2%2 we denote

ni,a1, bl
. { ICP | num(f1) = ny A frame(f1) = (a1, b1) A H
nUI’T(fg) =ng A frame(fg) = (ag, bg)
na,az,b
We define MIG? | | = = max MIC 0.

ng
MICn1 ay.p, = MAx

with frame(ay, b1)

PROPOSITIONG.5 contactgax( f, n2)
and nunif) = nq.

fis aplane coloring}
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6.2.1 Normal Colorings

Now we proceed as follows. We will first consider the case thatframe is suffi-
ciently filled (where we define what this means in a moment)himcase, we can use
edgéa, b,n) and exta, b, n) to bound the maximal number of x-steps (or 3-points)
as described previously in Section 3. After that, we will\wibat we do not have to
consider the frames which are not sufficiently filled (thehpédgical cases). We start
with defining what “sufficiently filled” means.

DEFINITION 6.6
Leta, b, n be positive numbers such thét > n. We define edge, b, n) by

k(k+ 1)

edgé€a,b,n) = max{k € N|ab—4 5 >n}
Letk = edg€a, b, n). Then we define
h_ gkt
ext(a,b,n) = | PR (6.1)

kE+1

Intuitively, edgéa, b, n) is the lower bound for the indent from the corners of a color-
ing of n points with frame(a, b), if we try to make the indents as uniform as possible
(since uniform indents generate the maximal number of gs3teex{a, b, n) is the
number of times we can addto edgéa, b, n). Note that(6.1) can be equivalently
defined by

k(k+1)

ext(a,b,n) = max{r e N|ab—4 5

—r(k+1) >n} (6.2)

wherek = edgé€a, b, n).

PROPOSITIONG.7
0 < ext(a,b,n) <3

PROOF By contradiction. Let: = edgéda, b, n). Suppose that efd, b, n) > 4. Then
one would get

ab—4@—4(/€+1)2n
4k(E+1)+8(k+1
ab — (k+ )2"' (k+ )Zn

A+ (R +2)

ab

But this would imply edgéu, b,n) > k + 1, which is contradictory to our assumption
thatk = edgéa, b, n). |

Using this definitions, we can say what sufficiently filled mea



184 J. of Discrete Algorithmsvol. 2 No. 2, 2004

DEFINITION 6.8 (Normal)

Letn be an integeria, b) be a frame withu < b. Furthermore, lek: = edg€a, b, n)
andr = ext(a, b,n). We say that: is normal for (a, b) if either4k +r < 2(a — 1), or
4k + 7 =2(a— 1) andab — 45E (k1) = n,

The reason for using this notion is thatifis normal for(a, b), edgéa, b,n) and
ext(a, b, n) yield a good bound on the number of x-steps of a plane colafinghis
will be shown in the next two lemmas.

LEMMA 6.9

If nis normal for(a, b) (with a < b), then there exists a caveat-free, connected plane
coloring f such that xstedg) = 4k+r, wherek = edgé€a, b,n) andr = ext(a, b, n).
Furthermore, ib > 3, then thisf satisfies #motoverlapgf) = 0.

The proof of this Lemma is given in the appendix.

LEMMA 6.10
Let (a, b) be a frame of a caveat-free and connected plane colgringh o < b. Let
k = edgéa, b,num(f)) andr = ext(a, b, num(f)). Then

dk+r 4k +r<2(a—1)

xsteps/) < {2(a —1) else

The proof of this Lemma is given in the appendix.

DEFINITION 6.11 (Upper bound for MIQ:a_rb)
Letn be a number and < b with ab > n > max(a,b). Letk = edgéa, b, n) and
r = ext(a,b,n), and let

_ Jdk4r f4k+r<2(a—1)
C2(a—1) else

We define

mazy(a,b,n) =n+1—a—>b mazxs(a,b,n) =2a+2b—20—4

mazs(a,b,n) =1 mazy(a,b,n) =1+4
With dy(n) we denotenaz(n, 0). Now we define
BMICZ:aﬂb =4 min(n’, maxy(a,b,n))
+ 3min(o(n’ — maz4(a,b,n), mazxs(a,b,n))
+ 2min(dp(n’ — Z?:?) max;(a,b,n), maxy(a,b,n))

+ 1 min(dp(n’ — 2?22 max;(a,b,n), maxy(a,b,n)).

Before we can prove that we can use Bl\@jg;b as an upper bound for M[@%b,
we need to show that we can restrict ourself to plane colsrjhgith the property
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that #rnotoverlap$f) = 0. To simplify matters (and since additionally we need
them later), we introduce the concept of a line number digtion. A line number
distributionis a functionD : Z — N with the property that

domD) = {z | D(z) > 0}

is finite. dom{D) is called thedomainof D. The line number distributio®; of a
coloring f of the planer = ¢ is defined by

Dy(2) =y | fle,y,2) =1}
GivenD, we define nurtD) = >, cyom p) D ()

LEMMA 6.12

Let f be a connected coloring of plane= ¢ with frame(a,b), num(f) = n and
#r_notoverlap$f) > 0. Then there is g’ with frame (a,?’), num(f’) = n and
#r_notoverlapsf) = 0 such that

b <b
D(f) = D(f")

Vn' :contactgax(f’,n") > contactgax(f,n’)

PROOF By Induction. Letf be a coloring, and let be a row such that we have
r.overlap (f,z) = 0. Let f1, fo with f; & fo = f be the sub colorings below (and
including) z and above (including) + 1. Now we placef; abovef, such that they
have overlap ofl. Call this coloringf’. Thenf’ has height: and widthb or b — 1.
Furthermore, we have

#r_not overlapg$f’) = #r_notoverlap$f) — 1
Surf, (f') = Surf, (f) — 2

Thus, we have
#A(S') = #4(f)
Let Dy be the line number distribution associatedftd/Ve have the following cases:
1.Ds(z) =1 = Dy(z+1). Then

xstepsgf’) = xstepsf) — 2.

By Lemma 4.6, we get

#3(f') = #3(f)

#2(f') = #2(f) +1

#1(f') = #1(f) -2
)
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2.D¢(z) =1ADys(z+1)>10rDs(z) >1ANDy¢(z+1) =1. Then

xstepgf’) = xstepsf) — 1
By Lemma 4.6, we get

#3(f') = #3(f) +1
#2(f) = #2(f) - 1
#1(f) = #1(f) - 1

which gives us contacta«(f’,n’) > contactgax(f’,n’) by Lemma 6.3.
3.Df(2) >1ANDg(2+1) > 1. Then

xstepsf’) = xstepsf)
By Lemma 4.6, we get

#3(f) = #3(f) +2
#Q(f’):# (f) =3
#L(f) = #1(f)
which gives us contagtg«(f’,n') > contactsax(f/,n’) by Lemma 6.3.

THEOREM6.13 )
Under the condition given in Definition 6.11, we get that BMIC, is an upper bound

for MIC™'

nab’

Va,b3Ib' <b: MIC" ap < BMICT

nab’

If nis normal for(a, b), then the above bound is tight, i.e., Bl\/g(;b = MICn ab

PROOF That there is & < b such that BMIC;L‘ 1 IS an upper bound for MIQZ b
follows from Lemmas 4.6, 6.4, 6.12, 6.3, 6.10 and from thétfzat all plane colorlngs
f with frame(a, b) satisfy Surf;(f) > 2a + 2b. That the bound is tight i: is normal
for (a, b) follows from Lemma 6.9. |

Note that any framéu, b) for a connected, caveat-free colorifigvith num(f) = n
will satisfy ab > n > max(a,b), which is the reason for the bound enin the
above definition. We need to investigate properties of frawith respect to normality
in greater detail. The next lemma just states that normaikept if we either add
additional colored points without changing the frame, orsméch to a smaller frame
for the same number of colored points.

LEMMA 6.14
Letn be normal for(a, b). Then alln < n’ < ab are normal for(a, b). Furthermore,
forall (a’,b") such that’ < aAb < bwith a'b’ > n, we haven is normal for(a’, b’).
The proof of this Lemma is given in the appendix.
Clearly, we want to search only through the normal framesridenoto find the

frame(a, b) which maximizes MIC}L:%Z,, givenn andn’. This will be subject of The-
orem 6.16.



An Upper Bound for the Number of Contacts in the FCC-HP-Mod&B7

6.2.2 Restriction to Normal Colorings
For this purpose, we define colorings which have

e maximal number of x-steps for given frare, b)
(i.e., xstep6f) = 2(min(a, b) — 1)),
e maximal number of colored points under the above restrictio

To achieve xstefgg) = 2(min(a, b) — 1), we must have 2 x-steps in every line. By
caveat-freeness, this implies that these maximal colerang as given in Figure 10.

The definition of these colorings is achieved by defining meatiline number dis-
tributions (where maximal refers to maximal x-steps). Linenber distributions have
been introduced earlier in Section 6.2.1. The importanperty of line number dis-
tributions is that one can easily obtain bounds on the maxiomaber of x-steps from
the line number distribution of a coloring.

The maximal line number distribution for a franie, b) is given by D" . which
has the property that below the line with maximal number dbie points, we add
2 points from line to line, and after the maximal line we sabtr2 points. For every
line number distributiorD, we have defined a canonical colorifigypy. num(D) is
the number of colored points @, which is the same as the points coloredfgy p).
The precise definitions can be found in the appendix. FigOrgites examples of
the corresponding canonical colorings with maximal nunadfersteps for the frames
(5,5), (5,6), (5,7) and(6, 7).

f Ca;(i;?ﬁgxg) fC.aI:"(.D.?ﬁg)@) fc.a}(i;?r;ix?) C.a;(.b.?ﬁixg

FiG. 10. Canonical colorings for the elemeis5), (5,6), (5,7) and(6,7) of M.

Now we want to find for a givem a minimal frame(a,,, b,,) such thata,,, b,,,)
has maximal number of x-steps. For this purpose, we defined sgles

M = U{{(n,n), (n,n+1),(n,n+2),(n+1,n+2)} | nodd

Note that)M is totally ordered by the lexicographic order on tuples. ¢tgrwe can
define MinRn) to be the minimal elemertt, b) € M such that nur(i)r‘fq’;’xg > n.

Note that we have excluded the cdsen) with n even in the sed/. The reason is
that in this case, any colorinfj of this frame which has maximal number of x-steps
(namely2(n — 1)) is not maximally overlapping. This implies that we can reglthis
to a smaller frame. Figure 11 shows an example.

LEMMA 6.15
Letn be a number anfk, b) be MinKn). Then
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b=6

i
o

a=6| ° a-1=5| ««

QAT =2 edagn TP =7
FiG. 11: Special case thatis even andiedgé€a, b, n) + ext(a,b,n) = 2(a — 1). The
first picture is the coloring fofa, b), the second fofa — 1, ).

@“
S
H»—L

e Thereis a plane colorinfwith frame(a, b) such that nurfif) = n and xstep§f) =
2(a —1).

e nis normal for(a, b) or (a,b — 1).
The proof is given in the appendix.

THEOREM6.16 (Existence of optimal normal frame)
Let n be an integer. Then for all framds’, b’) there is a framda,b) such that

a<a ANb<¥,nisnormalfor(a,b), (a,b—1)or (a — 1,b) andvn' : MICZ:a,b >
MIC” o

Proof (sketch). The main idea of this theorem is the following. Fixandn’. Let
(a,b) be a frame for with maximal number of possible x-steps (i.e., there is apla
coloring f with num(f) = n, f has fram€da, b), and xstep§f) = 2(min(a, b) — 1)).
Then we know that MI(’,}:HM < MICZ:M since by enlarging the frame, we loose
one4-point by lemma 4.6, but can win at most one x-step by Projoosi. 7. The same
holds for MIC’;:a,bH. Thus, it is sufficient to consider the minimal frarte,,, b,,)
which has maximal number of possible x-steps. But we can gshatin this casen

is normal for(am,, bm ), (@m, by — 1) OF (@ — 1, by). |

The full proof can be found in the appendix.

This theorem states, that we need only to consider all frah@asre within distance
one from a normal frame in order to find the frafaeb) with that maximizes MIQfa‘b
for a givenn andn’. Now we are able to summarize the results. .

THEOREM®G6.17
Let f be a connected, caveat-free coloring with= f; W ... W fi, wheref; is a
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coloring of the plane: = i. Then

k—1 a;b; > n; andni is
con(f) < » max{ LCp, a5, +BMIC ") | normalfor(a;, b;),
=1 (ai — 1, bz) or (ai, b; — 1)
(6.3)
+ Lan,a?,bZ‘a (64)

whereq;" = [\/ny] andb)® = [ 251

The proof is given in the appendix.

7 Dynamic Programming Approach

Finally, we need an efficient method to calculate the bouwelgin Theorem 6.17. We
apply an dynamic programming approach to calculate this\dotor this purpose,
we defineB;(n1,n) to be an upper bound on the number of contacts:faplored
points, provided that the first layer contaimspoints. Formally, we defin®; (n1,n)
recursively as follows:

Vn: B(n,n) =LCy ap,
wherea = [\/n] andb = [2], and
VYnVni <n:

B(?’Ll, n) = max (LCn17a17b1 + BMIC"? + B, (ng, n — nl)) ,

ni,a1,by
1<n2<n-—ny

(a1, by) frame forn,

where(ay, by ) is a frame fom; if a;b1 > ny andny is normalfor(aq,by), (a1 —1,b1)
or (a1, b1 — 1). Note that this implies that;, b; < n;. Finally, we define
B(n) = Jnax Bi(ny,n)
PROPOSITION7.1
B(n) can be calculated i®(n?) space and)(n°) time.

PROPOSITION7.2
For alln; < n, we have

f is connected and caveat-fre
Bi(ni,n) > max ¢ con(f) | Ik : ANf=hHW.. W[
A nun’(f) =nANnuM(fi) =ny

FurthermoreB(n) is an upper bound for the number of contacts(¢gonn any con-
nected, caveat-free coloring
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PrROOF Follows directly from Theorem 6.17. [ |

Finally, we want to compare the bound yielded by our appreddbh the6n bound
that is used so far in the literature (e.g.,in [1]). Table dvgs a comparison of our
bound with thesn bound. The difference between our bound andsthéound is that
our bound takes the surface of colorings into account, vasettee surface is ignored
in the6n bound. Since the surface grows slower witthan the number of contacts,

it is clear thatB(n) asymptotically converges tin.

n="7 | B(n) | 6n
5 8 30
10 26 60
15 44 90
20 65 | 120
25 86 | 150
30 107 | 180
40 152 | 240
50 198 | 300
75 316 | 450
100 || 438 | 600
200 || 942 | 1200
300 || 1461 | 1800

TABLE 1: Comparison of our bound with the previously introducedrmbof6n con-
tacts.

8 Conclusion

We have presented an polynomial time upper bound for the ruoflzontacts in the
FCC-HP-model. The final upper bound is composed of an upperdfor the number
of layer contacts, and an upper bound on the interlayer ctmta

There are two different outcomes of this research. The finahd B(n) can be
used in approximation algorithm (like [1]) to provide a gh&rbound for the approx-
imation ratio (at least for the case< 300). The bounds on the layer and interlayer
contacts on the other hand can be used in an branch-and-keanth for colorings
that have maximal number of contacts for a givenThese colorings are calldg/-
drophobic cores They are important, since it seems to be easier to predtehap
conformations of an HP-chain by first predicting all optirhgdrophobic cores, and
then try to thread the sequence on the hydrophobic cores.cbhid improve existing
protein structure prediction approaches, where an FC{cdattiodel is used as an an

intermediate step [10, 9]
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Appendix

A Proofsfor Section 6.2.1

For Lemma 6.9, we have to show thatifis normal fora, b, then there is a coloring such that xstegdd’)
is 4edg€a, b,n) + ext(a, b,n). For this purpose, we start with a colorirfg, that completely fills the
frame(a, b). Then, we remove fronf,, diagonals from the edges such that the we have emlgmaining
points. Letk = edg€a, b,n) andr = ext(a, b, n). Define

i1=k i2=k2+(57«22

4 4 (A1)
i3 =k+dp>1 ia =k +9d,>3,

whered,~; is 1 if r > 4, and0 otherwise. By this definition, we geég > 2 > 74 > 1. Then
i1...%4 Jiagonals are removed from the corresponding edges (seeeFlg), and the remaining, =
ab— 4@ —r(k 4+ 1) — n are removed from the bottom left corner. The tedious patiénfollowing
proof is to show that the excluded regions are actually ifisjeince otherwise we would exclude less points
than required.
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A4 A 6)

y

FIG. 12: Resulting coloring for Lemma 6.9. We have indicateddtfierent regions
defined in the proof. The numbers correspond to the formaiitiefis of these regions
in the proof.

Furthermore, we have to show that the resulting colorfrgatisfies #mot.overlapgf) = 0if b > 3.
Note that for the framg2,2) andn = 2, this does not hold (albeit = 2 is normal for(2,2)). The
resulting coloringf is of the form

and has #not.overlapg f) = 1. For this case, we have two x-steps, #t&(f) = 0.

Proof of Lemma 6.9Let n, a, b andk, r be given as defined in the lemma. Defifig, by

1 fz=0,1<2<a,1<y<b
0 else

fab(l'v Y, Z) = {

fap just fills the rectangle with side lengthandb completely. The cornerg,;, arec;, = (?) Cluy =

(?),crb = (?), andcy, = (%) Letn, = ab—4k(kT+1) —r(k+1)—n.Then0 < n, <k+1
by the definition ofr = ext(a, b, n). Letm = (a, b, 1,12, 13,14) be the tuple with; .. .44 as defined by
Equation(A.1). We will show that there is g with m = (a, b, 91,42, i3, 74) as a detailed frame.

Now definef by

points(f) = points(fas)

— {ta(c“,) +1- in(c“,) | 0<i< i1} (A.2)
—{(n%h) + 5 taveden) [0 < s <) (A3)
— {ta(er) +1-in(cra) | 0 < 1 < iz} (A4)
— {taeys) +1-iners) | 0 < 1 < is) (A5)
— {ta(era) +1-in(era) | 0 < 1 < ig} (A6)

See Figure 12 for the location of the above defined regionsst, Rive have to show that the different
exclusion sets are disjoint within the frame f£f,, i.e., there is no point’ = (2) such thatl <y <b,

z
1 < z < a andp'is in two of the exclusion sets.
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For (A.2) and(A.3) it follows directly from the definition. Furthermore, we gbat
{ta(clb) +1- in(clb) | 0<l<ir+ 1} (A7)

contains both(A.2) and(A.3), and we will show that eithefA.3) is empty, or that we will get pairwise
disjointness of A.7) with (A.4), (A.5) and(A.6).

So let's considefA.5) and(A.6). Sincedk + r = i3 + 14 +i2 +i1 < 2(a — 1), we get by definition
of m = (a, b,i1,12,13, i4) that

i3+ig<a-—1 (A.8)

as follows: Ifiz + i4 were greater thaa — 1, theniz +i4 +i2 +i1 >a+a—1=2a—1>2(a—1)
(since by definition oin = (a, b, i1, i2, i3, i4) we know thatia + i1 < i3 + ¢4 < 2 + i1 + 1), which
would be a contradiction. Now lgf? be the point Withfab(pémaxz) =1, p?’y,mwz is contained in

the set defined byA.5), and has maximat-value. By the definition of t&,;), p3,,,,., Must have also
maximal y-value. Now the maximal y-value that can be aclieéng A.5) is b. The z-value of a point in

marz

ta(cry) + 1+ in(ep) = (3) +Lin (o5 ) +1- (5855)

which has y-valuéis1 +2-0.5 -1 =1 + [. Hence, we get

o 0
3 = b
P maxz (1+(i371))

Similarly, we definepzminz to be the point Withfab(p717,L,L-7Lz) =1, p717n,im is contained in the set
defined by(A.6), and has minimat-value. Analogously, we get

- 0
4 = b
P minz (af(z};fl))

Now (A.5) and (A.6) would contain a common point if 4+ (i3 — 1) = i3 > a — (ia — 1), i.e. if
i3 + 14 > a + 1, which is not the case by Equatidrl.8). By Equation(A.8), we even get that the point
0
<1+b' ) must be colored by, which is a point in columny = b.
3

In the analogous prove fgrA.2), (A.3) and(A.5), we get that two cases. Eithér + iz + i3 + i4 =
2(a — 1), in which casg(A.3) is empty by the definition ofri normal for(a, b)”, and we can adapt the
above proof for(A.2) and(A.5). Oriq + i2 + i3 4+ 94 < 2(a — 1), in which case we can conclude that
i1 +13 < a—1 < b—1and we can adapt the above proof fet.7) and(A.5) instead.

The case$A.2) and(A.4), as well ag A.4) and(A.6) are analogous.

In any case, we will get that there are points coloredfiy columny = 1 andy = b, and in the rows
z = 1andz = a. Hence,f has framega, b).

The remaining cases4.2) and(A.6), as well ag A.4) and(A.5) are left to the reader.

Thus, we get that nufif) = ab — 4@ — r(k + 1) — n,, which isn. Furthermore f has exactly
11 + 12 + i3 + 24 X-Steps.

Finally, we have to show that > 3 implies #cnotoverlapg f) = 0. For this, we consider the column

10 {3

<
|
Ste-eo000--

L
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i.e., the set of points
c= {((z;i}-@) |1<i<a).
We have two cases:
1. f ((béi3)) = 1. By the definition off, this implies that all pointg'in C satisfy f (p) = 1, from which
#r_notoverlapg /) = 0 follows immediately.
2. f ((bi‘@) = 0. Sinceis < 173, we know that( (b9i3)> can only be excluded by the left upper

a a

corner exclusion (A.4). This can be only the cas&ift- i3 > b. By Equationg(A.1) and(A.8), we get
iz + i3 < a < b, which implies that the only possible caseds+ i3 = b. This implies by(A.1) that
12 = 13. Furthermore, we have already proven that there is a colpwed in row z = a, which implies
thatiy = io — 1. We have two subcases:

(a) 14 > 1. Then we have the following situation:

0 -
By the definition off, this implies that botly’ = ((bfz‘ls)) andp’ are colored byf. This holds also
a_

0
for all points betweey and ( (b—i3) |, from which we conclude #notoverlapg f) = 0.
1

(b) 24 = 0. In this casejs andi2 must bel, which impliesb = 2.
For Lemma 6.10, we have to show that for every plane colofimgth frame(a, b),

4k If 4k 2(a—1
xstepgf) < tr Fr<Za-1)

2(a—1) else
(wherek = edgéa, b, num(f)) andr = ext(a, b, num(f))). For the casdk + r < 2(a — 1), one has
to show that the maximal number of x-steps can be achievedsijbdting the edge indents ...i4 as
uniformly as possible (i.e., such théj, j/ : |i; — i;/| < 1. This is done in the following proof.

Proof of Lemma 6.10Let f,k andr be as given in the lemma. For the first cddet+ r < 2(a — 1), we
define chafi1, i2, i3, 74) to be the corresponding edge characteristics, i.e., tHe ggmerated by ordering
i1,12,13, 14 Dy size. We define xstefps , iz, i3,%4) to bei; + is + i3 + 44, and eXi1, 42, i3,i4) to be

i1 i i3 iq
ST+ i+> i +> 4
=1 j=1 =1 =1

By Lemma 5.6, xstef$1, i2, i3, ¢4) is the maximal number of x-steps that any caveat-free andemad
plane coloringf with detailed framea, b, i1, i2, i3, i4) can have. ek1,i2,%3,44) gives a bound on the
number of points that may be colored Wyby Proposition 5.4 (i.e.qb — ex(i1, 2,43, %4) > num(f)).
Furthermore, we define the orderirgon quadruples byiy, iz, i3,14) < (i}, 15, %,1}) iff (i1,i2,i3,14)
is lexicographically smaller thafi! , i5, i5, i/} ).

Now define

I(il,i27i37i4) = {(Z’l,lé,lé,lg) | XStep$i,1,i/2,ig,iil) = XStep$i1,i2,i3,i4)}

Now if there is an elemerii} , ¢4, 45,4} ) of I(i1,i2,%3,44) such that there is aand;’ with 23 < i;., +2,
then (i}, i3, i, 7)) is not maximal since substituting by i; + 1 andd’, by i, — 1 will give an element
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(¢, 44,44, 44 ) such that
xstepsi’ , iy, i3, 1)) = xstepsiy, i3, 15, )
chai(if, if, i4, i) < chaif i, if, if)
ex(ih, i, i, i) > ex(if i, i, if). (A.9)
Hence, a<-maximal elemen(s} , 5,45, ) of I(i1,42,43,44) Will satisfy Vj, j/ : \i;- — i;.,| <1,andis
minimal with respect to &Y.
Now let f be a plane coloring of framgz, b) such thatlk 4+ » < 2(a — 1), and letf have the detailed

frame(a, b, ], id, 4], if) with i +if + 4 +if. Then
xstepsf) < +if +if +i]
by Lemma 5.6.
Let (i1,42,13,%4) be a<-maximal element irI(z’{Jé,ig,if:). Let kp, bemin(i{,z’&ié,iﬁ). Then
Vi i km < ij < km + 1 by the maximality of(iy, i2,i3,44). LetO < ry, < 3 be the number of times
such thati; = k, + 1. Then

num(f) :ngab—ex(i{,igig,if:)

< ab — ex(i1,2,13,14) (by (A.9))
i i2 i3 iy
=ab— i+ D i+ > i+ >4
j=1 j=1 j=1 j=1
k’!n
=ab—4(>_j) = rm(km + 1)
j=1
o (ko + 1
—ap— gkt 1

2

Now this implies that:,,, < edg€a, b, n) by definition of edgéa, b, n). If k,, < edgda,b,n), then we
get, 4km + rm < 4edgda, b, n) + ext(a, b, n) sincer,, < 3. Otherwise, ifk,, = edg€a, b, n), we get
thatr,, < ext(a,b,n) by the definition of exta, b, n). This implies

xstepg f) < xstep$i{,i£, z‘?f:, z‘f) = 4km + rm < 4edg€a, b,n) + ext(a, b, n),

which proves the first case.
The second case follows from Proposition 5.7.

Proof of Lemma 6.14Without loss of generality, we can assume< b. The first claim follows from the
definition of normal. We will prove the second claim by indant

We will prove the case fot’ = a — 1 andb’ = b. The proof fora’ = a andd’ = b — 1 is analogous.
For smaller frames, it follows by applying induction hypeses.

Now leta’ = a — 1 andb’ = b. If n < o'V, there is nothing to prove. Otherwise,rif > a't/, let
k = edgda,b,n) andr = ext(a, b,n). Now the definition fork andr can be equivalently restated as
follows. k& andr are the uniquely determined integers such that r < 3

k k
n+4Y j+r+)k+1)>ab>n+4> j+rk+1) (A.10)
j=1 Jj=1

Furthermore, lek’ = edgda’, b’, n) andr’ = ext(a’,b’, n). We have to show the following:
Claim 1 4k’ + 7' < 2(a’ — 1) = 2(a — 1) — 2.

Claim 2 eitherdk’ +r/ < 2(a—1)—2, ordk’ +r/ = 2(a—1)~2andn+4 | j+r/ (k' +1) = a't'.
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Sincedk + r < 2(a — 1) by assumption, for proving Claim 1 it suffices to show that
4k' +r' < 4k +r —2.
Given the above, then we know that
4k’ +r=2(a' —1) = 4k +7r=2(a—1) (A.11)

Furthermore, we have

dk+r=2a—-1) = (r=0Vr=2) (A.12)
and 4k’ + 1" =2(a’ —1) = (r'=0Vvr' =2) ‘
We have two cases:
1.r > 1. Now
2Aa—1)>4k+1
1
—1>2k+ —
a > —l—2
>2]€+11
a Z
- 2
a>2(k+1) (aint.)

and hencefortth > a > 2(k + 1). By combining(A.10) for (a, b) and(a’, b’), we get

k K
4y G+ Dk+1)—b > (a—1b > n+4> j+r/ (K +1)
Jj=1 j=1
Al

k k'
n+AY i+ Dk+1) —20k+1) > n+4d i+ +1)
j=1 j=1
Sincer + 1 < 4, we get immediatelyt’ < k. We have two subcases:
(a) k' = k. Then
k k
n+4Y i+ r+D)k+1D) —20k+1)>n+4> j+r'(k+1)
j=1 Jj=1
(r+D(k+1)—2k+1) > (k+1)
r+1—-2>7

which implies that- > 2 andr’ < r — 2. Hence 4k’ + r’ = 4k + r’ < 4k + r — 2, which shows
the first claim.
For the second claim, #k" + r’ < 2(a—) — 2, then there is nothing to prove. Now assume that
4k" + " = 2(a — 1) — 2. Then we know by EquatiofA.11) that alsodk + r = 2(a — 1). Now
4k +r = 2(a — 1) impliesr = 2 by Equation(A.12) (since we have assumed> 1). Furthermore,
we know thatab = n + 42;?:1 j + 2(k + 1) sincen is normal forb. Sincek = k’/, r = 2 and
0 <7 <r-—2 wegetr’' =0. Hence, '/ = (a —1)b > n+ 42;?:1]' by Equation(A.10)
applied toa’, b’ andk’, r’. Since by our assumptionsk’ + ' = 4k = 2(a — 1) — 2, we have to
show that(a — 1)b < n +435_, j. Now
k
(a—Db=n+4> j+2(k+1)—b
j=1
VI
k
(a—1Db<n+4> j+2(k+1)—2(k+1).
j=1
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Hence,n + 42;?:1 j=n+ 42;?/:1 j > (a — 1)b, which proves claim 2. Note that this implies
thatif4k +r = 2(a — 1), thendk’ +r’ = 2(a’ — 1). Furthermore, we know thatis 2k + 2, which
implies thata is even. Figure 11 shows an example of this special case.
(b) k" < k—1.Then
Ak’ +r' <4k — 1)+’
<4k —4+3 =4k—1 (' < 3)
<4k +r—2. (r>1)

In this case, we have eithef = 3, which implies by(A.12) that4k’ + v’ < 2(a’ — 1), orr’ < 2,
which implies4k’ + r’ < 4k + r — 2. Again, this gives udk’ + r’ < 2(a’ — 1), which proves the
second claim for this case.

2.7 =0.Then
a>2k+1,

and thereforé > a > 2k + 1. Now by Equation(A.10) applied toa, b anda’, b, we get

k k'
n+4d j+1k+1)—b > (a—1)b >n+4Y j+r'(K +1)
j=1 j=1
Al
k K’
n+4y j+lk+1)—2k—1 >  n+4d j+r/(K +1)
j=1 j=1

This gives immediatelys” < k. Now if &’ were the same ds then we would get

k k

n+4y j—k>n+4> j+r'(k+1)
j=1 j=1

which is a contradiction sinceé < r’. Hence, we can conclude thiat < k — 1. If ¥’ < k — 2, then
4k’ + r' < 4k — 2 follows immediately. Otherwise, #' = k — 1, then

k k—1
n+4y j—k>n+4Y j+r'k
j=1 i=1
dk — k> 'k

3>

which impliesr < 2. Thereforedk’ + v’ < 4(k — 1) + 2 = 4k — 2, which proves claim 1. For claim
2,if 4k’ + 7’ < 2(a — 1) — 2, then there is nothing to prove. So assume #iét+ ' = 2(a — 1) — 2.
Then we know by EquatiofiA.11) that alsotk + r = 2(a — 1). Sincen is normal fora, b, this implies
that

Now
(a—1)b<ab—2k—1 (b>2k+1)
k
=n+Y j-2k—1
j=1
k—1

=n+» j+2%k—1
=1
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This impliesr’ < 2 by Equation(A.10) applied to(a’, ') = (a—1,b). This gives uslk’+r" < 4k—2,
and therefore a contradiction to our assumption #dét+ r’ = 2(a — 1) — 2. This proves claim 2 for
this case.

B Proofsfor Section 6.2.2

We need some additional notions. LBtbe a line number distribution. We say th@tis connectedf
dom(D) = [mindom(D).. max dom(D)]. Let 22 be an element in do(D) with Vz : D(z) < D(zD).
We say thatD is monotoneff
Vz € dom(D) :z < 2P = D(z—1) < D(z)
Vz € dom(D) :z > 22 = D(z) > D(z+1)
We define thecanonical coloringf..,(p) inductively as follows. Le(y, z,n) be a triple of integers.

Then

1 fz=0z=2andy<y <y+n
0 sonst

fy,z,n(% y/’ Z/) = {

fy,=,n is the coloring of rowz, which starts ay and ends ay + n — 1 (i.e., has exactly n colored points).
If dom(D) = {d}, then

fean(p) = fo,a,D(a)
Otherwise, letn = maxdom(D), and letD’ be D except onm, whereD’(m) = 0. Letyp: be the
y-coordinate of the leftmost colored point ff,,,(p/y inrowm — 1. l.e.,

y {min{yfm(Dq(o,y,m—l):l} it D(m —1) = D'(m—1) >0
D’ =

0 else
Then
fO,m,D(m) 4 fcan(D’) if D(m —1) =0
fyprim,D(m) ¥ fean(pry I D(m —1) =1 < D(m)
Jean(D) = andD(m) < D(m —1) +1

fypr=1,m,D(m) ¥ fean(pry 1 D(m) > D(m—1)+1
Jypr+1,m,D(m) ¥ fean(pr) €lse
PrROPOSITIONB.1
Let D be a line number distribution. Then
xsteps fean(p)) = 2[{m | D(m) > 0A D(m +1) > 0 A [D(m) — D(m + 1)| > 2}|
+1[{m | D(m) >0AD(m+1) >0A|D(m) — D(m + 1)| = 1}
PROPOSITIONB.2

Let D be a line number distribution. I is connected, therf..,(p) is connected and satisfies
#r_notoverlapg f.qn(p)) = 0. If D is connected and monotone, thén,,, p) is caveat-free.

PROPOSITIONB.3
Let D be a connected, monotone line number distribution.bletmax ran(D) anda = |dom(D)|. Then
(a,b) is the frame off .o (D)-

In the following, we will consider line number distributipnvhose canonical coloring has maximal
number of x-steps within its frame, and cannot be extendowitfoosing an x-step.
DEFINITION B.4 (Maximal Line Number Distribution)
Let (a, b) be a tuple witha < b such that is odd, ora # b. ThenD®? .is defined by

max3

b—2[[§] -2 f1<z2<a
0 else

a,b
DmaXS(z) = {
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Note that we have excluded the case where we have a ffanag with a even. The reason is just that
in this case, any coloring of this frame which has maximal number of x-steps (nan2ly — 1)) is not
maximally overlapping (i.e., there is a rowsuch that roverlap® (f, z) < |Dy(z) — Dy(z + 1)|). This
implies that we can reduce this to a smaller frame. Figurenblvs an example.

PROPOSITIONB.5
Let (a,b) and(a’, b") be two frames witlu < b anda’ < b’ such that

a <anb <borad <anb <b.

Then nunﬁD“/’b/) < num(D%?

max3 max3/*

PROPOSITIONB.6
Dr‘;’a’i@ is a line number distribution witdom (D) = [1..a]. Furthermore, it is monotone.

PROOF. By definition, we know thaDr‘:]’;(Sis afunctionDr‘]‘;‘,fx3 : 7. — N. We have to show thdt)r‘;’al;s >1

foreveryl < z < a. Since|[ §] —z| is monotone decreasing irfrom 1 to [ 5], and monotone increasing
in z from [ £ to a, it suffices to show thaDﬁlfxg(l) > 1andD%? (a) > 1. For D% (1), we have

max3 max3
a a+1
D) =b=2([51-1) 2 b-2(5=-1)
=b—(a+1-2)=b—(a—1)
>1 (a<b)
ForDr‘;’;S(a), we have two cases:
1. a odd. Then
a
Digg@) = b= 2(a = [51)
1
:b—2a+2% =b—a+1
>1 (a<b)

2. a even. Then we know thdtis odd (since(a, a) with a even was excluded in the definition of the
lemma). Henceh > a + 1. Now

a
Diala) = b=2(a— [51)
a
=b—2 2— =b—
a + 2 a
>1 (a+1<0D)
|

Now we want to find for a givem a minimal frame(am , b ) such that{a.,, by, ) has maximal number
of x-steps. For this purpose, we define a set of tuples

M = U{{(n,n),(n,n—i— 1),(n,n+2),(n+1,n+2)} | nodd}

Note that)M is totally ordered by the lexicographic order on tuples. ¢¢enve can define Minf) to be the
minimal elementa, b) € M such that nurﬁDr‘;’;xg) > n. Figure 10 gives an example of the corresponding
canonical colorings with maximal number of x-steps.

PROPOSITIONB.7
Let (a, b) be a frame such thalt?l‘,‘n’ef’x3 is defined, and let. be a number. Thefu, b) is normal forn iff

num(Da'bg) <n.

max
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PROOF. If ais odd, then lek be [ 5] — 1. Then2k + 1 = a. Furthermore, we know tha])r‘;’;;s z)+2=

D;’:)G(z+1) forevery linezwith 1 < z < k = [2]—1. Similarly, we getDr‘;",:f’x3 2)—2 = Dﬁ]g’xs(z+1)

for every linez with [$] = a — k < 2 < a. Hence,
k k
ab=numDpl ) +2> j+2> j.
j=1 j=1

This impliesk = edg€b, nun}(D%fxg),a), 4k = 2(a — 1) andab = num(Dr‘;’;ig) + 42521]‘. This
implies that nur(]Dr‘;;’xz) is normal for(a, b). The rest follows from Lemma 6.14.

The case for even is analogous. [ |
LEMMA B.8
Let (a, b) with a odd anda < b+ 1, ora even andr < b + 2. Then
Vi<z<a:D%P (z)=D*"1(z)—1

max3 max3

Furthermore, for any: such that numDr‘:];gl) <n< nun‘(D,‘:];;@), there is a connected, caveat-free

coloring f such that xstey’) = 2(a — 1), frame(f) = (a, b) and nunff) = n.

PROOF. The first claim follows by the definition oDr‘:]fxg if Dr‘;’al;gl is defined, which is the case for all
frames considered in the lemma.

For the second claim, we will construct a line number distitn D such thatf., ) has the required
properties. By the first claim, we get mqm,‘;’a”xs(z)) —a = nun(Dr‘;’aZgl(z)), which implies by the
definition ofn that nurr(Dr‘;;’xs(z)) —n=d<a.

e aodd. Letd; = [%] anddz = d — d;. Thendy < d;. Sincea is odd andd < a, we get

a—1 a
i < — < [= B.1
1< =< (®.1)
Furthermore,

a—dz—l—lza—dl—l—l (B.Z)

a—1 2a —a+14+2 a

>a— 1= > =

>a 5 + 5 [2]

We defineD by
Db (z) -1 f1<z<d
D(z)={ D& (z)—1 ifa—d2<z<a

D&t () else

By (B.1) and(B.2), D is well-defined and satisfies n¢i?) = n. We have to show thaf..,p)
has frame(a, b). By the first claim, we get dofD) = dom(D“’b = [1..a]. Furthermore(B.1)

max

and(B.2) showD([5]) = Dr‘;’ab)@([%]) = b. SinceD is connected and monotone, this shows that

fean(p) has framga, b) by Proposition B.3.
e g even. Letd; = L%J anddz = d — dy. Thendz > di. Sincea even, we get

a a
d<==[=
1< S =13

anddz < 5 = [35]. Now,
a

a
a—d2+12a—5+1>(2].

Then we can proceed analogously to the previous case.
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Now we are able to proof Lemma 6.15.

Proof of Lemma 6.15.
1. a odd andb = a. Then the previous element M is (a — 1,b). We will show that nuniD

num(Dg- ) + 1, which implies nungD%? ) = n by the minimality of (a, b). Hence,f

max3 can(D;z‘i%)
is the coloring we are looking for the first claim. Furthermor is normal for(a, b) by Proposition B.7,
which shows the second claim.

To showD%fo: Dr‘;a’xé’b + 1, note that(“gl] =[4]— 1. Hence, we have foral < z < a—1
that

ab y _
max3/

~1,b a—1 a
Dip* () =b—2|[* =12l =b—2/[S] —1 -4

- b—2|[g] — (24 1) = Doz +1)

Hence, nur(lDl‘,‘n’;>< —num(D%-Lb) = D®b (1), Now

max3 max3
D) =a =231~ 1) (a="1)
:a—2(a;1—1):a—(a+1)+2:1 (a odd)

2. aeven antd = a + 1. Then the previous element M is (a — 1,b). Since[“T*l] = [5], we get

a —

1
1]

=b—-2|[5] - 2| = Dyigel®)

max3

D Lby=b—2|

max3

SinceD™? (a) = b —2(a — [4]) =b—aandb=a+ 1, we get nungD&L ) — num(D - LP) =

max3 max max3

D;’abxs(a) = 1. By the minimality of(a, b), this implies that nur(lDr‘;’;>< =n. Hence,fcan(Dr?];@ is
the coloring we are looking for the first claim. Furthermoneis normal for(a, b) by Proposition B.7,
which shows the second claim.

3.a 0dd,b > a. By the definition of MinFn), we get that nurler‘:];gl) < n. Hence, there exists a
coloring f with frame(f) = (a,b), num(f) = n and xstep§f) = 2(a — 1) by Lemma B.8, which
shows the first claim. By Proposition B.7, we get that mmﬁgg’xgl) is normal for(a,b — 1). By
Lemma 6.14, this implies that is normal for(a, b — 1), which proves the second claim.

Finally, we can prove the main theorems.

Proof of Theorem 6.16Without loss of generality, we can assume that< o’. Then we have to show
that for any caveat-free, connected colorifigith frame(a’, b'), there is a framéa, b) and a coloringf,;
such that(a, b, fus) satisfies the followingZond, p/ ¢:

a<ad ALV
A nnormal for(a, b), (a,b — 1) or (a — 1,b)
A (vn' : contactsax(fap, n') > contactsax(f, n')).

By Lemma 6.12, we can restrict ourself to colorings wheradtoverlapg f) = 0.

So let f be an arbitrary caveat-free, connected plane coloring dagisfies #motoverlapgf) = 0,
num(f) = n and framéf) = (a’,b’). By Proposition 5.7, we know that xst€gy < 2(a’ — 1). Fur-
thermore, le{am , bm ) be MinKn), and letf,,, be the coloring as required by Lemma 6.15 (or,, b ).
Then (again by Lemma 6.15) xstégs,) = 2(am — 1), andn is normal for(am, bym ) or (am, bm — 1).
We have the following cases:
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1.a’ > am. We have the following subcases:
(@) V" > bm. Letk = |/ — am| (note thatk > 0). Sincean < a’ Abm < b, we get Surf;(fm) <
Surf,; (f) — 2k. Since xstepsf) < 2(a’ — 1) and xstep§fm) = 2(am — 1), we get by Lemma 4.6
that

#4(fm) = #4(f) + k

#3(fm) = #3(f) — 2k
#2(fm) = #2(f) + 2k
#1(fm) = #1(f) — 2k.

This impliesVn’ : contactgax(fm,n’) > contactsmax(f, n’) by Lemma 6.3. By Lemma 6.1%, is
normal for(am,, bm) OF (@m, bm — 1). Hence,(am, bm, fm) satisfiesCond,/ p ;.
(b) b’ < bp,. Sinceby, < am + 2, we get

bV <bm—1<am+1<d

Since we have assumed < b/, the only case can be that = b’. Hence,b,, — 1 = am + 1,
and thereforé,, = an, + 2. By definition of M, this implies thata,, is odd, which implies that
a =b =am + 1iseven.

By Lemma 6.15, case 3 we get thais normal for(am, bm — 1) = (a/ — 1,b). Hence(da/, V', f)
satisfies conditiolCond,,/ .

2. a’ = a;,. We have the following subcases:
(@) ' > bm. Since xstep§f) < 2(am — 1) = xsteps fr.) and Surf,; (fm) < Surf,;(f), we know that
(am, bm, fm) satisfies the conditio@ond/ p ;.
(b) ¥ < bp,. By Lemma 6.15, we get that is normal for(am , bm) = (@', bm) OF (am,bm — 1) =
(a’,bm — 1). Sinceb’ < by, we get by Lemma 6.14 thatis also normal foa’, b”), which implies
that(a’, v/, f) satisfies conditioCond,/ 3 ¢.

3. a’ < ay,. We have the following subcases:

(@) b’ < by,. By Lemma 6.15, we get thatis normal for(am, , bm ) Or (@m , bm —1). Sincea’ < a,, and
b’ < by, this implies thatr is normal for(a’, ') or (a’, b’ — 1) by Lemma 6.14. Hencéa', ', f)
satisfies conditiotCond,/ p/ ¢-

(b) ¥ > by If nis normal for(a’, b'), then(a’, ', f) satisfies conditiorCond, .

Otherwise, consider the frante’, b,,). We have the following subcases:

i. num(D“l’bm) < n. If num(D“,’bm) = n, then(a’,bm, f
C

max3 max3 ) satisfies condition

/,b
an(Dpaa™)
Condgr pr ¢

7’ !
So assumé);e{fg’”‘ < n. Sincea’ < am < b, We know thatDr‘;afSis defined for alb > b,,. Let

bmaz > bm be the maximal integer such that nw@;f;m) < n. By Proposition B.7, we know
thatn is normal for(a’, bimaz ). By Lemma 6.14, we get that,q. +1 < V'. Sincea’ < am < bm
andb., < bmaz + 1, we can apply Lemma B.8 t@ and(a’, bymaz + 1). This Lemma will give us
acoloring f” such that Hencea’, bmax + 1, f/) satisfies the conditiofond,s 4 ;.

ii. num(D;;’fgn) > n. Then nuerDr‘;ng’sbm) > num(Dr‘;;'fg”) by Proposition B.5. We have shown

in the proof of Lemma 6.15, cases 1 and 2, that = b, or a,, even impliesn = num(Dr‘;g;’sbm).

Since we are in the sub-case n(LlDﬁl;’”;'sbm) > n, this implies by the definition of Min§ that
am < by — 1. Since we have excluded the casgs = b,, anda,, even,a,, < b,, — 1 implies
that (am , bm — 1) isin M. This implies nunﬁD“m'bmfl) < n by the minimality of(am , bm ).

max3
’ ’
Sincea’ < ay,, we know thatDr‘;e{fg”’l is defined. By Proposition B.5, we get n(@%aﬁgnfl) <
’
num(D;g;’sbmfl) < n. Since we have showw' < b,,, — 1 and nunﬂD%afg"il) < m, we can

apply the proof of the previous case with, — 1 instead o, .
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Proof of Theorem 6.1 By definition, we get

k—1 k
con(f) = 3_ICT + 3LCS,.
i=1 =1

Let (a{, b{) be the frame off;. Then we get by the definitions of L,L(Ea{b{ and M|cZi+1f ; that

i,a;,b;

niq1 fit1
MIC o2 ICfi

nj,a; by
and

c
LC, ot b7 = LCF,-

ng,

This gives us

MisQs,

COr(f) < ki:lmaX{Mlcni+l b; + LC"i,ai»bi | a;b; > n; }
i=1
+maX{|—an,ak,bk | agbr > ny. }
By Proposition 6.1, we get
V(a;,b;)V(ai,bi) a; < a; Ab; < b; - LC"ivai,bi > Lcniya;’b; (B.3)

Thus, we get
max {LCpy ay b, | arbr > np } =LCpy am prm,
wherea}” = [\/n] andb}* = [ZTM, which makes up the second summd#dt) in the inequation of
the theorem.
By the last theorem, we get

V(a;,b5)3(ai, bi) 2 a; <af Ab; <V

i>0i
A n; is normal for(a;, b;), (a;,b; — 1) or (a; — 1,b;) (B.4)
AMIC L > MICZZQM.
By Theorem 6.13 we get
V(ai, by) : BMIC L > MICT L (B.5)

Equations(B.3), (B.4) and(B.5) together give us the first summag@l3) of the inequation claimed in
the theorem.
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