
Local Exact Pattern Matching for Non-Fixed
RNA Structures

Mika Amit, Rolf Backofen, Steffen Heyne, Gad M. Landau, Mathias M€ohl, Christina Otto, and Sebastian Will

Abstract—Detecting local common sequence-structure regions of RNAs is a biologically important problem. Detecting such regions

allows biologists to identify functionally relevant similarities between the inspected molecules. We developed dynamic programming

algorithms for finding common structure-sequence patterns between two RNAs. The RNAs are given by their sequence and a set of

potential base pairs with associated probabilities. In contrast to prior work on local pattern matching of RNAs, we support the breaking

of arcs. This allows us to add flexibility over matching only fixed structures; potentially matching only a similar subset of specified base

pairs. We present an Oðn3Þ algorithm for local exact pattern matching between two nested RNAs, and an Oðn3 log nÞ algorithm for one

nested RNA and one bounded-unlimited RNA. In addition, an algorithm for approximate pattern matching is introduced that for two

given nested RNAs and a number k, finds the maximal local pattern matching score between the two RNAs with at most kmismatches

in Oðn3k2Þ time. Finally, we present an Oðn3Þ algorithm for finding the most similar subforest between two nested RNAs.

Index Terms—Pattern matching, RNA local similarity, tree local similarity, sequence-structure matching

Ç
1 INTRODUCTION

RIBONUCLEIC acid (RNA) is a chain of nucleotides present
in the cells of all living organisms. Most RNAs are

single-stranded. RNA strands have a backbone made from
groups of phosphates and ribose sugar, to which one of four
bases can attach (Adenine, Cytosine, Guanine, and Uracil).
The bases are linked together by their phosphodiester bonds
(usually referred to as backbone connection), and interact with
each other using hydrogen bonds (usually referred to as bond
connections), forming the RNA structure. We further denote
two bases that are connected by bond connection as base pairs
and a base that has only backbone connections as a single
base. RNA performs important functions for living organ-
isms, ranging from the regulation of gene expression to assis-
tance with copying genes. The important role that small
RNA take in operating the cell’s control has been discovered
recently and it was referred to as the breakthrough of the
year 2002 in Sciencemagazine [6].

Finding similarity between sequences and structures of
RNAs is an important and well studied task. The reason is
that the activity and functionality of RNA is determined by
its sequence and mainly by its secondary and tertiary

structure [17]. Furthermore, the structure of a molecule is
usually much more preserved during evolution than its
sequence alone. Thus, analyzing and comparing the second-
ary (and tertiary) structures of given RNAs plays a very
important role in the RNA research.

The complexity of RNA secondary structure is defined
by the amount and order of the base pairs that it contains. It
is commonly categorized as follows:

� Plain: no base pairs at all (this is the primary struc-
ture of the RNA)

� Nested: each base can be connected by a bond connec-
tion to at most one other base, and there are no cross-
ing base pairs

� Crossing: each base can be maximally connected by a
bond connection to one other base

� Bounded-Unlimited: each base can be maximally con-
nected by a bond connection to a constant number of
other bases

� Unlimited: no restrictions on the base pairs
Fig. 1 demonstrates three ways of visualizing RNA

nested structure. Throughout this work we use the arc-
annotated sequence, that represents both the sequence and
the structure of the RNA by adding an arc between each
two bases that have a bond connection. This representation
can describe both nested and bounded-unlimited RNA
structures (see Fig. 1).

There are several approaches to compute the similarity
between two given RNAs, among them are tree similarity
algorithms such as edit distance [5], [7], [8], [10], [14], [23],
[24], alignment [2], [13], [18], [20], and LAPCS [9], [11], [15].
An edit distance between two ordered trees, T1 and T2, is a
set of edit operations applied on T1 in order to turn it into
T2. The optimal edit distance between two trees is such set
of edit operations with minimum cost. Tree alignment
restricts the edit operations such that insertions are made
for both T1 and T2 to make them isomorphic, and then relab-
eling of the nodes is done (see [3], [4] for thorough surveys).
Zhang and Shasha [24] present an edit distance algorithm

� M. Amit is with the Department of Computer Science, University of Haifa,
Mount Carmel, Haifa 3498838, Israel. E-mail: mika.amit2@gmail.com.

� R. Backofen is with the Bioinformatics, Institute of Computer Science,
Albert-Ludwigs-Universit€at, Freiburg, Germany and Center for Biological
Signaling Studies, Albert-Ludwigs-Universit€at, Freiburg 79110, Germany.

� S. Heyne, M. M€ohl and C. Otto are with the Bioinformatics, Institute of
Computer Science, Albert-Ludwigs-Universit€at, Freiburg 79110, Germany.
E-mail: heyne@ie-freiburg.mpg.de, info@mamoworld.com.

� G.M. Landau is with the Department of Computer Science, University of
Haifa, Mount Carmel, Haifa, Israel and Department of Computer Science
and Engineering, NYU Polytechnic School of Engineering, New York Uni-
versity, Brooklyn,NY 11201. E-mail: landau@univ.haifa.ac.il.

� S. Will is with the Bioinformatics, Institute of Computer Science, Albert-
Ludwigs-Universit€at, Freiburg, Germany and CSAIL and Mathematics
Department, MIT 02139, Cambridge, MA.

Manuscript received 7 Nov. 2012; revised 27 Nov. 2013; accepted 18 Dec.
2013; date of publication 1 Jan. 2014; date of current version 7 May 2014.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCBB.2013.2297113

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 11, NO. 1, JANUARY/FEBRUARY 2014 219

1545-5963� 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

that works inOðnm�minfD1; L1g �minfD2; L2gÞwhere n
and m are the sizes of T1 and T2, respectively, and are
defined by the number nodes in the tree (n > m). Di is the
depth of tree i and Li is the number of leaves in tree i. Klein
[14] presents an Oðm2n log nÞ algorithm, which in some
cases performs better than the previous algorithm. An opti-
mal Oðn3Þ decomposition algorithm for tree edit distance
was given by Demaine et al. [7]. Ma et al. [25] compute the
edit distance between two RNAs where at least one is of
nested structure. This algorithm runs in Oðn2D1D2Þ, and an
explanation of how to modify it to run in Oðn3 log nÞ is
given.

Jiang et al. [10] present an algorithm for global edit dis-
tance between nested and crossing structures, this algo-
rithm allows arc edit operations, such as arc breaking, arc
altering and arc removing. The algorithm runs in Oðn2m2Þ
and can be modified to work in Oðn2m log mÞ time using
the technique of Klein [14]. In a similar way to our explana-
tion in Section 5, we believe that the algorithm can be modi-
fied to run in Oðn3Þ time for nested structures using the
technique of Demaine et al. [7].

Another approach for similarity checking is finding
common motifs between two RNAs. In this problem, local
maximal exact sequence-structure patterns are computed.
Backofen and Siebert [19] solve this problem for two fixed
nested RNAs in Oðn2Þ time. In Schmiedl et al. [21] we pres-
ent a heuristic solution for bounded-unlimited structures.

In this work, we solve the problem of finding exact and
approximate local common motifs between nested and
bounded-unlimited structures. We are the first to present
deterministic algorithms for these problems when the arc
breaking operation is allowed. The basic edit operations
that are allowed in our algorithms are similar to the ones of
[10], and we also use the ideas of [14] and [7] in order to
improve the time complexity. The problem of local pattern
matching is known to be more complex than the global one,
in this work we developed new techniques for finding
such patterns.

Jansson and Peng [12] describe Oðn4Þ algorithms for
finding a subforest F of T1 such that F has a minimal
edit distance from T2. The structure of F is restricted to
being a simple, sibling or closed subforest, where a simple
subforest is a subtree, a sibling subforest is a set of simple
subforests whose roots are siblings in T1, and closed is a
complete subtree of T1.

1.1 Our Results

In this work, we are looking for local exact pattern matching
between two RNA molecules. We use the definitions from
[19], and add an additional edit operation: arc breaking,
which breaks a base pair into two single bases. Adding the
arc breaking operation means that the bonds are not neces-
sarily preserved in the common substructure. This enhance-
ment to the pattern matching algorithm allows greater
flexibility in both the input and the output. Instead of repre-
senting a fixed structure, the input can be interpreted as a
set of weighted secondary structures. This is encoded by
base pairs with probabilities. For this purpose we score the
match of two base pairs according to their probabilities. The
arc breaking operation is demonstrated in Fig. 2. In addi-
tion, the scoring functions used in our work can be modified
in order to support various matching schemes. For instance,
compensatory mutations, or mismatches between single
bases can be treated. The formal definitions of the problems
are given in Section 2.

We present a simple Oðn4Þ algorithm for computing the
local exact pattern matching between two nested RNAs
(Section 3). In Section 4, we continue with an Oðn3 log nÞ
algorithm, and in Section 6 we show how to modify
the algorithm to support one nested and one bounded-
unlimited input structure (ðNested;Bounded� UnlimitedÞ,
in short). In Section 5 we show how to improve the algo-
rithm for (Nested;Nested) RNAs to Oðn3Þ. These algorithms
use Oðn2Þ space.

The approximate matching problem is presented in
Section 7. In this problem we look for pattern matching hav-
ing at most k mismatch bases. In Section 7 we present an
Oðn3k2Þ algorithm for computing the local approximate
matching between two nested RNAs with at most k mis-
matches. This algorithm can be also modified to work in
Oðn3k2 log nÞ for (Nested; Bounded� Unlimited) RNAs. The
space complexity of these algorithms is Oðn2kÞ.

In Section 8 we describe an Oðn3Þ-time and Oðn2Þ-space
algorithm for computing the most similar sibling substruc-
ture between two (Nested;Nested) RNAs, as defined in [12].

2 NOTATIONS AND DEFINITIONS

An RNA Sequence (in short, RNA) is an ordered pair
R ¼ ðS;BÞ, where S ¼ s1; . . . ; sjSj, and si is defined over the
alphabet S ¼ fA;C;G; Ug and represents the RNA primary
structure. B, the optional secondary structure, is a set of
tuples fða; b; pÞj1 � a < b � jSj; 0 < p � 1g, such that a
tuple bp ¼ ða; b; pÞ 2 B represents a hydrogen bond (a base
pair) between bases a and b that exists with probability p in
R. We denote a and b as the left and right endpoints of bp,

Fig. 1. RNA secondary structure representations: figures (a-c) represent
the same RNA sample of length 18 with depth 5. (a) schematic two
dimensional description of RNA folding (b) arc annotated sequence
(c) an ordered tree: a single base is represented as a leaf and a base
pair is represented as either a leaf (if the base pair’s span is 2) or as an
internal node with child nodes (of the base pairs and single bases that it
contains). Figure (d) represents a bounded-unlimited RNA structure with
an arc-annotated sequence.

Fig. 2. Arc breaking operation: both representations show the result of
the arc breaking operation for base pair CG in positions (10,16).

220 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 11, NO. 1, JANUARY/FEBRUARY 2014

respectively. A base that is neither left nor right endpoint is
denoted as a single base. We further distinguish between
two connection types of bases in R: the connection between
a base i and its subsequent base iþ 1 is denoted as a back-
bone connection, and a base pair connection is denoted as a
bond connection. The span of a base pair bp ¼ ða; b; pÞ 2 B is
the number of bases that it contains. i.e., jbpj ¼ ðb� aþ 1Þ.
We assume that the number of base pairs in R is OðnÞ,
which holds for nested and bounded-unlimited structures
by definition. For simplicity, we assume that R contains a
base pair between positions 1 and n, and add such base pair
if it does not exist.

Definition 1 (Parent-child relation between bases). A
parent of base pair bp ¼ ða; b; pÞ 2 B (resp. single base i) is the
smallest span base pair pbp ¼ ðc; d; qÞ 2 B that contains bp
(resp. i) in it. That is, c; d are the closest endpoints of a base
pair such that c < a < b < d (resp. c < i < d). We denote
bp (resp. i) as the child of pbp.

Note that in Nested structures, every base (or base pair)
has a unique parent base pair, except for bp ¼ ð1; n; pÞ. In
more complex structures, a base (or base pair) can have sev-
eral parent base pairs. In this paper, we are interested in the
parent-child relation between bases (and base pairs) in
Nested structures.

We proceed with definitions of substructures of R (see
Fig. 3 for examples):

Definition 2 (Path). A path in RNA R is a sequence of unique
positions ði1; . . . ; iyÞ such that 81 � k < y, ik is connected to
ikþ1 with either a backbone or a bond connection. If ik is con-
nected to ikþ1 with a bond connection we say that the base pair
bp ¼ ðik; ikþ1; pÞ is contained in the path.

Definition 3 (Pattern). A pattern in RNA R is a subset of R
positions P ¼ fi1; . . . ; iyg such that y � n and 81 � k < l �
y there exists a path in P that connects ik and il.

Definition 4 (Exact Pattern Matching). Given two RNAs
R1 ¼ ðS1; B1Þ and R2 ¼ ðS2; B2Þ, with spans n and m respec-
tively, an exact pattern matching (in short, matching) M,
over R1 and R2 is a set of pairs M ¼ fði1; j1Þ; . . . ; ðik; jkÞj 81
� ‘ � k; 1 � i‘ � n; 1 � j‘ � mg that satisfies the following
conditions:

1. S1ði‘Þ ¼ S2ðj‘Þ 81 � ‘ � k.
2. P1 ¼ fi1; . . . ; ikg is a pattern in R1.
3. P2 ¼ fj1; . . . ; jkg is a pattern in R2.
4. For each 1 � x; y � k, a base pair bp1 ¼ ðix; iy; pÞ is

contained in P1 if and only if a base pair bp2 ¼
ðjx; jy; qÞ is contained in P2.

5. M is maximally extended.

The first condition applies to the sequence equivalence
requirement, whereas the rest of the conditions apply to the
structural equivalence requirement. The last condition
refers to the maximality of the matching, meaning that it
cannot be extended sequence- or structure- wise. For two
base pairs in the matching, bp1 ¼ ða; b; pÞ 2 B1 and bp2 ¼
ðc; d; qÞ 2 B2, we say that ðbp1; bp2Þ 2 M.

Each matching M has an associated score that can be
described as:

scoreðMÞ ¼
X

ði;jÞ2M
aði; jÞ þ

X
ðbp1;bp2Þ2M

bðbp1; bp2Þ;

where a : ½1; jSj� � ½1; jSj� ! R returns the score of matching
two single bases, and b : ð½1; jB1j�Þ � ð½1; jB2j�Þ ! R returns
the score of matching two base pairs bp1 ¼ ða; b; pÞ;
bp2 ¼ ðc; d; qÞ.

In our implementation, where exact matching is con-
cerned, we set the score to �1 when the compared bases
are different in order to avoid mismatches. The functions
are defined as follows:

aði; jÞ ¼ 1 if S1ðiÞ ¼ S2ðjÞ or�1 otherwise;

bðbp1; bp2Þ ¼ ðð1þ pÞ � ð1þ qÞÞ if S1ðaÞ
¼ S2ðcÞ andS1ðbÞ ¼ S2ðdÞ; or�1; otherwise:

The definition of the scoring functions enables finding
biologically meaningful structures via the scoring. In the
general case the scoring functions can be defined to return
scores other than 1 or ð1þ pÞ � ð1þ qÞ when the bases
match. The optimal sequence-structure matching depends
on both the matching of single bases and base pairs. This
enables us to sometimes prefer a matching of a base
pair with a high probability over matching a single base, or
prefer matching large sequence of single bases over low
probability base pair (see Fig. 4).

Fig. 3. Path and pattern examples in three representations of the same
RNA example. A path is marked with horizontal lines and contains the
bases {1; 2; 3; 20; 21}, a pattern is shadowed and contains the bases
{5; 6; 8; 9; 13; 14; 15; 16; 17; 18}. Note that the pattern contains the base
pairs (5; 18), (8; 14) and (9; 13), whereas the base pairs (3, 20) and
(10,12) are not included.

Fig. 4. Two matchings example. The figure presents two matching

examples that can be defined between R1 and R2. In both cases the

matchings are maximally extended. Note that matching ðaÞ contains the

base pairs ðb1; b01Þ and ðb2; b02Þ, and matching ðbÞ contains ðb1; b01Þ, ðb2; b02Þ
and ðb3; b03Þ. The matching scores depend on the definition of a and b

functions. Given b1 ¼ ð64; 80; 0:9Þ, b2 ¼ ð66; 76; 0:6Þ, b3 ¼ ð68; 74; 0:1Þ,
b01 ¼ ð31; 46; 0:8Þ, b02 ¼ ð33; 44; 0:5Þ, and b03 ¼ ð35; 38; 0:3Þ and using our

function definitions, scoreðaÞ ¼ 14þ ð1:9 � 1:8Þ þ ð1:6 � 1:5Þ ¼ 19:82 and

scoreðbÞ ¼ 11þ ð1:9 � 1:8Þ þ ð1:6 � 1:5Þ þ ð1:1 � 1:3Þ ¼ 18:25, thus the

matching with the maximal score is ðaÞ.

AMIT ET AL.: LOCAL EXACT PATTERN MATCHING FOR NON-FIXED RNA STRUCTURES 221

2.1 Compensatory Mutations

In order to consider compensatory mutations instead of
exact matching, one can modify bðbp1; bp2Þ function defini-
tion: instead of scoring two base pairs with different end-
points with �1, the score can be given depending on the
endpoints bases. This way, two base pairs with different
endpoints get higher score in the matching than the score of
matching their endpoints as single bases.

2.2 Local Exact Pattern Matching Problem
Definition

Given two RNAs, R1 ¼ ðS1; B1Þ and R2 ¼ ðS2; B2Þ with
spans n and m, resp. (n � m), scoring functions aðÞ and bðÞ,
and a number c, we want to find the set M containing all
matchings with a score greater than c. i.e,

M ¼ fMjM is a matching and scoreðMÞ � cÞg:

Note that the definition of the problem does not restrict
the structure of the given RNA sequences. In addition,
observe that since thematching setM contains only common
base pairs between R1 and R2, the structure of the input
RNAs actually defines the structure of M. We will explore
two different settings of RNA structures: ðNested;NestedÞ
and ðNested;Bounded� UnlimitedÞ. Hence, the output
matching set structure for both settings isNested.

3 A SIMPLE Oðn4Þ ALGORITHM FOR LOCAL EXACT

PATTERN MATCHING

In this section we solve the local exact pattern matching
problem following its definition in Section 2.2. We use
similar ideas to those in Zhang and Shasha’s tree edit
distance algorithm [24], and use the edit operations pre-
sented in [10]. The algorithm distinguishes between two
cases of matchings: those that don’t contain any base
pair matching and those that contain at least one. In the
first case, no base pair from B1 is matched with a base
pair from B2. The problem is, therefore, finding common
substrings using suffix trees in time and space OðnþmÞ
[16]. The second case is the more interesting one, and we
will explore its implementation in the following sections.
The key idea is that we find the matchings between each
combination of a base pair from B1 and a base pair from
B2. For convenience reasons, we refer to arc-annotated
substrings as substrings.

3.1 Finding the Maximal Matching between Two
Base Pairs

The algorithm divides the process of finding the matching
into two stages: finding the maximal matching in between
the two endpoints of both base pairs (discussed in Sec-
tion 3.2), and extending the match “outside” of the base
pairs (discussed in Section 3.3). On each of these stages,
the maximal score is saved in table M, of size OðjB1kB2jÞ,
in which an entry Mbp1;bp2 contains the scores of comparing
the two base pairs bp1 2 B1 and bp2 2 B2: inside the base
pairs, their maximal extensions and the total score. We
denote these scores as Min

bp1;bp2
, Mout

bp1;bp2
, and Mtotal

bp1;bp2
respectively.

3.2 Finding the Maximal Score Matching Inside the
Base Pairs

The input of the algorithm is two RNAs R1 ¼ ðS1; B1Þ
and R2 ¼ ðS2; B2Þ and the output is Min table, in which
an entry Min

bp1;bp2
contains the maximal matching score

between the base pairs bp1 2 B1 and bp2 2 B2 and their
inner parts. The values of Min table are computed in
increasing order of the base pairs’ spans in order to
enable reuse of calculations: if two base pairs are con-
tained in two other base pairs, then the calculation of
the smaller base pairs’ maximal matching is already cal-
culated and there is no need to recalculate it (see Fig. 5
case (c) for an example).

The main procedure of the algorithm computes for every
combination of a base pair bp1 ¼ ða; b; pÞ 2 B1 and a base
pair bp2 ¼ ðc; d; qÞ 2 B2, their maximal matching score by
comparing the two substrings s ¼ ðsa; . . . ; sbÞ and
t ¼ ðtc; . . . ; tdÞ that are defined over bp1 and bp2, respec-
tively. It is a dynamic programming algorithm that com-
putes matchings between prefixes of the substrings s and t,
in increasing order of their sizes.

We next describe the patternMatchðÞ function that com-
putes the maximal matching score between two substring s
and t.

The pattern matching function. For every two substrings
s ¼ ðsa; . . . ; siÞ and t ¼ ðtc; . . . ; tjÞ the function computes
four different matchings:

Fig. 5. Lmatch, Rmatch, Full and Score matchings between substrings
si and ti: Lmatch is marked with ‘L’ right arrows, and Rmatch is marked
with ‘R’ left arrows. The probabilities of b1 and b2 to exist in si and ti are
0:2 and 0:2, respectively. (a) Non-overlapping: Lmatchðs1; t1Þ contains
‘CCA’ and Rmatchðs1; t1Þ contains ‘GGAC’, Full ¼ �1 and Scoreðs1;
t1Þ ¼ 7 (both ‘CCA’ and ‘GGAC’) . (b) Overlapping: Lmatchðs2; t2Þ con-
tains positions (3, 30), (4, 31), (5, 32), (6, 33) and (7, 34),
Rmatchðs2; t2Þ contains positions (6, 34), (7, 35), (8, 36), (9, 37), (10,
38) and (11, 39). Note that using both (7, 34) and (7, 35) (or both (6, 33)
and (6, 34)) would have created an overlapping matching. Therefore,
Scoreðs2; t2Þ ¼ 9 (all single bases of s2 and t2 excluding base 35), and
Fullðs2; t2Þ ¼ �1 since there is no matching that contains both (3, 30)
and (11,39). Note that in this case, the maximal score is the one that
uses arc breaking operation: Scoreðs2; t2Þ does not include “jumping
over” b1 and b2. (c) “Jumping over” base pairs: Lmatchðs3; t3Þ contains
‘CC’, Rmatchðs3; t3Þ contains ‘GG’, ðb1; b2Þ, and ‘A’. Note that since b1
and b2 are contained in Rmatchðs3; t3Þ, the matching bases inside of
them (‘AC’ and ‘U’) are also contained in Rmatchðs3; t3Þ. Also note that
the matching between b1 and b2 is a Full matching: the matching bases
fð17; 50Þ; ð19; 53Þ; ð20; 54Þg contains both endpoints of b1 and b2.
Fullðs3; t3Þ ¼ �1 and Scoreðs3; t3Þ ¼ 9:43 (contains ‘CC’ from left and
‘GG’, ðb1; b2Þ, and ‘A’ from right). (d) Full < Lmatch: Fullðs4; t4Þ ¼ 9 by
matching all bases of both s4 and t4 and arc-breaking b1 and b2.
Lmatchðs4; t4Þ ¼ 9:44 by “jumping over” the base pairs b1 and b2,
Rmatchðs4; t4Þ ¼ 9. Hence, Scoreðs4; t4Þ ¼ Lmatchðs4; t4Þ.

222 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 11, NO. 1, JANUARY/FEBRUARY 2014

� Lmatch: The maximal left-to-right matching that
starts at positions ða; cÞ and continues going from
left to right using a backbone or bond connections
until either a mismatch occurs or the rightmost bases
of s or t are reached.

� Rmatch: The maximal right-to-left matching that
starts at ði; jÞ and continues going from right to left
until either a mismatch occurs or the leftmost bases
of s or t are reached.

� Full: The maximal matching that contains both ða; cÞ
and ði; jÞ indices, if such matching exists.

� Score: The maximal left to right and right to left
matchings between the two substrings, such that
they do not overlap and are maximally extended.

Note that the maximal matching score does not necessar-
ily include both Rmatch and Lmatch, since the bases they
contain may overlap. Another observation is that the score
of a Full matching may be smaller than Score (see Fig. 5 for
examples).

We use Scoreða . . . i; c . . . jÞ to refer to the Score between
substrings s ¼ ðsa; . . . ; siÞ and t ¼ ðtc; . . . ; tjÞ. We refer to
Lmatch, Rmatch and Full properties in a similar way. The
initialization values of invalid substrings (either i ¼ a� 1 or
j ¼ c� 1) are set to 0. The values are computed according to
the following equations for every i � a and j � c indices (in
the same order):

Fullða . . . i; c . . . jÞ

¼ max
Fullða . . . i� 1; c . . . j� 1Þ þ aði; jÞ
Fullða . . . e� 1; c . . . f � 1Þ þMin

b1;b2;

(
(1)

Lmatchða . . . i; c . . . jÞ

¼ max

Lmatchða . . . i� 1; c . . . jÞ
Lmatchða . . . i; c . . . j� 1Þ
Fullða . . . i; c . . . jÞ;

8><
>:

(2)

Rmatchða . . . i; c . . . jÞ

¼ max

Rmatchða . . . i� 1; c . . . j� 1Þ þ aði; jÞ
Rmatchða . . . e� 1; c . . . f � 1Þ þMin

b1;b2

0;

8><
>:

(3)

Scoreða . . . i; c . . . jÞ

¼ max

Lmatchða . . . i; c . . . jÞ
Scoreða . . . i� 1; c . . . j� 1Þ þ aði; jÞ
Scoreða . . . e� 1; c . . . f � 1Þ þMin

b1;b2;

8><
>:

(4)

where b1 ¼ ðe; i; rÞ 2 B1 and b2 ¼ ðf; j; wÞ 2 B2 (if such base
pairs do not exist the value ofMin

b1;b2
is �1).

Finally, the score of Min
bp1;bp2

, for bp1 ¼ ða; b; pÞ 2 B1 and

bp2 ¼ ðc; d; qÞ 2 B2 is set as follows: Min
bp1;bp2

¼ bðbp1; bp2Þ þ
Scoreða . . . b; c . . . dÞ.

The computation of Full values is straight-forward: either
the matching is extended to include the rightmost bases, or it
is extended to include the rightmost base pairs and their
inner parts. If the matching cannot be extended, the value is
set to �1. Lmatch value is the maximum between

previously computed Lmatch scores and the current com-
puted Full value. Rmatch contains the maximal score that
includes i; j, therefore, if the bases mismatch, it is set to 0.
Otherwise, it is the maximum between extending the match-
ing with the rightmost bases or base pairs. The value of Score
is the maximum between extending the maximal score with
either single base or base pairs matching, or the maximal left
to right matching, Lmatch, that was computed between the
substrings. The reason for that is that each one of the allowed
operations can set Rmatch score to 0. Lmatch, on the other
hand, cannot be decreased and it can only be increased to
contain the Fullmatching score (if it is bigger).

Note that in any of the computations the structure of
the rightmost bases is not checked, which can lead to arc-
breaking - the case when a base pair is treated as two sin-
gle bases with no bond connection between them.

The value of Rmatch is not used for the total score in this
algorithm, but in the improved algorithm it will be used
and for clarity we define it here.

Time Complexity: patternMatchðÞ function computes the
matching scores between all prefixes of the substrings s and t.
Computing the entries of Full, Lmatch,Rmatch, and Score is
done in constant time, since it is the maximum over a con-
stant number of expressions. These expressions are either
scores of matching between prefixes of s and t or scores of
matching base pairs that are contained in s and t. Therefore,
computing the main procedure in increasing order of the
base pairs’ spans and comparing the prefixes in increasing
order of their sizes yield constant time work in each of the
expressions. We therefore count the number of substrings
that are being compared as part of the algorithm. There are
at most OðnÞ base pairs in R1 and at most OðnÞ base pairs in
R2, therefore, there are at mostOðn2Þ base pair comparisons.
Each base pair can have at mostOðnÞ prefixes (depending on
its span), which gives a rough upper bound ofOðn2Þ for each
two base pairs comparison. This intuitive analysis gives an
upper bound ofOðn4Þ-time for the entire algorithm.

A more careful analysis of the number of compared sub-
strings is the following analysis: for a base i 2 R define the
depth of i as the number of base pairs that contain i in them. For
example, depthðiÞ ¼ jfðx; y; pÞ 2 Bjx � i � ygj. Define Max-
Depth as the maximal depth over all bases i in R. For a base
pair bp 2 B, and for a base i that is contained in bp, there exists
one prefix of bp such that i is its rightmost base. Therefore, a
base i is the rightmost base of depthðiÞ substrings. The total
number of substrings in R is bounded by jRj �MaxDepth ¼
Oðn2Þ. We get that the number of compared substrings in both
RNA molecules is bounded by jR1j �MaxDepth1 � jR2j�
MaxDepth2 ¼ Oðn4Þ. It immediately follows that the number
of recursive calls is bounded byOðn4Þ.

3.3 Extending the Match Outside the Base Pairs

This section describes the algorithm for computing the max-
imal extension of the matching outside the endpoints of
base pairs. The input of the algorithm is two RNAs,
R1 ¼ ðS1; B1Þ and R2 ¼ ðS2; B2Þ, and the table Min. The out-
put is the Mout table. Each base pairs comparison can be
extended to both left and right, in this section we describe
the algorithm for the extension to the right; the extension to
the left is similar.

AMIT ET AL.: LOCAL EXACT PATTERN MATCHING FOR NON-FIXED RNA STRUCTURES 223

The algorithm computes the maximal extensions scores
for every position i 2 R1 and j 2 R2, in decreasing order of i
and j. The values are kept in Rextend table (of size Oðn2Þ),
in which an entry Rextendði; jÞ contains the maximal exten-
sion starting at positions i; j going right. If a mismatch
occurs between si and tj, the value is set to 0. Otherwise, the
value is the maximum between matching single bases and
matching base pairs, as follows:

Rextendði; jÞ ¼ max
Rextendðiþ 1; jþ 1Þ þ aði; jÞ
Rextendðbþ 1; dþ 1Þ þMin

b1;b2
0;

8<
: (5)

where b1 ¼ ði; b; rÞ 2 B1 and b2 ¼ ðj; d; wÞ 2 B2, and Rextend
ðnþ 1; jÞ ¼ Rextendði;mþ 1Þ ¼ 0.

Eventually, for every two base pairs, bp1 ¼ ða; b; pÞ 2 B1

and bp2 ¼ ðc; d; qÞ 2 B2, the values in Mout
bp1;bp2

table are set as
follows:

Mout
bp1;bp2

¼ Rextendðbþ 1; dþ 1Þ þ Lextendða� 1; c� 1Þ:

Time Complexity: computing each entry of tables Rextend
and Lextend takes Oð1Þ time, since it is the maximum over
three expressions. This gives a total of Oðn2Þ time for com-
puting the tables. The calculation of table Mout for two base
pairs bp1 2 B1 and bp2 2 B2 is done in constant time, which
gives a total time of Oðn2Þ for all combinations of bp1 and
bp2. Therefore, the time complexity of the algorithm is Oðn2Þ.

3.4 CompleteOðn4Þ Algorithm
The algorithm for computing the local exact pattern match-
ing between two given RNAmolecules is as follows:

1. Compute the pattern matching inside all base pairs
intoMin.

2. Compute the extension tables Rextend and Lextend
and the tableMout accordingly.

3. For each base pair bp1 2 B1 and each base pair
bp2 2 B2:M

total
bp1;bp2

¼ Min
bp1;bp2

þMout
bp1;bp2

.

Time Complexity: the time complexity of step (a)
is equal to Oðn4Þ, as described in Section 3.2. In step (b),
the computation of tables Rextend, Lextend, and Mout

tables is done in Oðn2Þ time (see Section 3.3). Finally, the
last step runs in Oðn2Þ time: for each combination of a
base pair from B1 and a base pair from B2, the computa-
tion of Mtotal

bp1;bp2
entry is done in constant time.

Therefore, the time complexity of the complete algorithm
is Oðn4 þ n2 þ n2Þ ¼ Oðn4Þ. The space complexity of the
algorithm is bounded by Oðn2Þ, as the Min and Mout tables
size is Oðn2Þ. In addition, the size of tables Score; Full;
Lmatch and Rmatch is Oðn2Þ per each two base pairs

comparison. The tables Lextend and Rextend size is also
bounded by Oðn2Þ.

From this time complexity analysis we immediately
observe that the bottleneck of the algorithm is computing the
maximal matching score inside the base pairs. In the next
Sections 4 and 5 we show how to improve this time
complexity.

4 AN Oðn3 log nÞ ALGORITHM FOR LOCAL EXACT

PATTERN MATCHING

In this algorithm we use similar ideas of Klein’s tree edit
distance algorithm [14]. We first explain the heavy path
decomposition concept in regarding RNAs and continue
with the modifications to the Oðn4Þ algorithm.

Definition 5 (heavy-light base pairs). For a given RNA
R ¼ ðS;BÞ, we define each base pair in B as heavy or light by
the following recursive definition: the base pair bp1 ¼
ð1; jRj; pÞ is defined light (if such base pair does not exist, we
add it as a fictive base pair). For each base pair bp 2 B, we pick
a child base pair of bp with maximal span among the children
of bp (breaking ties arbitrarily) and mark it as heavy, the rest of
the children are marked as light. We say that heavyðbpÞ ¼ hp
if hp is the heavy child base pair of bp.

The sequence of bp1; heavyðbp1Þ; heavyðheavyðbp1ÞÞ; . . .
defines a descending path called the heavy path, let P ðbp1Þ
denote this path. We recursively decompose R into heavy
paths: we start with P ðbp1Þ and add the heavy path of each
light child base pair of bp1 (see Fig. 6). We denote each light
base pair as the root of the heavy path that it contains.

The following Lemma of Sleator and Tarjan [22] bounds
the number of light base pairs that contain a base in R:

Lemma 1 (Sleator and Tarjan [22]). Each base in RNA
R ¼ ðS;BÞ, of size n, is contained in at most Oðlog nÞ light
base pairs.

Definition 6 (Special Substrings). The set of special sub-
strings of an arc annotated substring s ¼ ðsa; . . . ; sbÞ, that is
defined over a base pair bp ¼ ða; b; pÞ 2 B with heavyðbpÞ ¼
ðx; y; rÞ 2 B, consists of the suffixes of ðsa; . . . ; syÞ starting at
positions a; . . . ; x, and the prefixes of ðsa; . . . ; sbÞ ending at
positions y; . . . ; b (see Fig. 7).

We denote the special substrings that are prefixes of
ðsa; . . . ; sbÞ as prefix special substrings, and the suffixes of
ðsa; . . . ; syÞ as suffix special substrings. Let s be a substring.
We denote last(s) as either the rightmost or the leftmost base
of s. We define lastðsÞ of a suffix special substring, s, to be
the leftmost base in s, and lastðsÞ of a prefix special sub-
string s to be its rightmost base. Each base i in ða; . . . ; bÞ that
is not contained in the heavy child base pair of bp, hp,
defines exactly one special substring that contains i as its
last base. Thus, the number of special substrings defined
over a base pair is: spanðbpÞ � spanðhpÞ.

Let bp1 ¼ ða; b; pÞ 2 B1 with heavyðbp1Þ ¼ hp ¼ ðx; y; rÞ
2 B1, bp2 ¼ ðc; d; qÞ 2 B2, and let s ¼ ðsa; . . . ; sbÞ, h ¼ ðsx;
. . . ; syÞ and t ¼ ðtc; . . . ; tdÞ be the substrings defined over
bp1, hp and bp2, respectively.

The algorithm is based on two changes to the Oðn4Þ algo-
rithm: the first modification is in the compared substrings:
we compare all substrings of t and only the special

Fig. 6. Heavy path decomposition: in this RNA structure, we have three
heavy path routes. They are presented in both tree and arc-annotated
structures.

224 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 11, NO. 1, JANUARY/FEBRUARY 2014

substrings of s as part of the patternMatchðÞ function. The
special substrings are compared in increasing order of their
sizes: we start with the heavy child base pair’s substring, h,
and increase the substring from left, until the left endpoint
of bp1 is reached (the suffixes special substrings). Then, we
continue with the prefixes of bp1, starting from sa; . . . ; sy,
and continue going from left to right until the right end-
point of bp1 is reached. Using this specific order of compari-
sons, we are able to use previously computed values (of the
comparison between the heavy base pair substring, h, and
all substrings of t) in a more efficient way.

The second modification is in the main procedure of
patternMatchðÞ: in the previous algorithm, lastðsÞ was
always the rightmost base, in this version it is sometimes the
leftmost base. Thus, the function should support ignoring or
matching of both lastðsÞ positions. The function is therefore
the combination of two patternMatchðÞ versions: for the pre-
fix comparisons the computation is exactly as described in
Section 3.2. Using the previous notations of bp1; hp and bp2,
the suffix comparisons are computed for every a � i < x
and c � j � d according to the following equations:

Fullði . . . y; j . . . dÞ

¼ max
Fullðiþ 1 . . . y; jþ 1 . . . dÞ þ aði; jÞ
Fullðeþ 1 . . . y; f þ 1 . . . dÞ þMin

b1;b2;

(
(6)

Lmatchði . . . y; j . . . dÞ

¼ max

Lmatchðiþ 1 . . . y; jþ 1 . . . dÞ þ aði; jÞ
Lmatchðeþ 1 . . . y; f þ 1 . . . dÞ þMin

b1;b2

0;

8><
>:

(7)

Rmatchði . . . y; j . . . dÞ

¼ max

Rmatchðiþ 1 . . . y; j . . . dÞ
Rmatchði . . . y; jþ 1 . . . dÞ
Fullði . . . y; j . . . dÞ;

8><
>:

(8)

Scoreði . . . y; j . . . dÞ

¼ max

Rmatchði . . . y; j . . . dÞ
Scoreðiþ 1 . . . y; jþ 1 . . . dÞ þ aði; jÞ
Scoreðeþ 1 . . . y; f þ 1 . . . dÞ þMin

b1;b2
;

8><
>:

(9)

where b1 ¼ ði; e; rÞ 2 B1 and b2 ¼ ðj; f; wÞ 2 B2, and the ini-
tialization values of invalid substrings (j ¼ nþ 1) are set
to 0.

Eventually, the value in Min table is set for bp1 ¼ ða;
b; pÞ 2 B1 and bp2 ¼ ðc; d; qÞ 2 B2 to: Min

bp1;bp2
¼ bðbp1; bp2Þþ

Scoreða . . . b; c . . . dÞ.
Note that the above equations are symmetrical to the

equations of the prefixes comparison defined in Section 3.2.
The values of Full; Rmatch and Lmatch are computed
according to previously computed suffixes scores and
smaller base pairs matching scores. The value of Score is
similarly the maximum between Rmatch and previously
computed Score values.

Time Complexity: the same reasons that the Oðn4Þ algo-
rithm gave constant time for each patternMatchðs; tÞ func-
tion call apply here, too. We therefore count the number of
compared substrings: following Lemma 1, each base is
defined as lastðsÞ of at most Oðlog nÞ special substrings,
which gives a total of Oðn log nÞ special substrings. The set
of substrings t, are all Oðn2Þ substrings of R2. The number
of compared substrings is therefore Oðn log n� n2Þ ¼ O
ðn3 log nÞ.

Thus, the time complexity of the above algorithm for
computing the matching inside each combination of a base
pair from B1 and a base pair from B2 is Oðn3 log nÞ. The
space complexity of the algorithm is bounded by Oðn2Þ, as
the space complexity of [14] (see also [4]).

5 AN Oðn3Þ ALGORITHM FOR LOCAL EXACT

PATTERN MATCHING

In the previous algorithm (Section 4) we select the larger
RNA structure as the dominant structure. w.l.o.g. we defined
R1 to be the dominant structure, and for each bp1 2 B1, bp1
was the dominant base pair, by which special substrings
were defined.

An improvement for this algorithm can be done using
the optimal decomposition algorithm described in [7].
The key observation is that the dominant structure can be
decided for each combination of base pairs comparison
rather than once for the entire algorithm. The complete
description and proof of the algorithm are given in [7]. In
this section we give the highlights of the algorithm and
”translate” it into the arc-annotated representation of
RNA molecules.

As an initialization step of the algorithm, both R1 and
R2 are recursively decomposed into heavy paths (see
Fig. 8). The algorithm computes the matching between
each combination of a base pair bp1 2 B1 and a base pair
bp2 2 B2. The difference is that on each such comparison,
the algorithm selects the dominant base pair to be the
one with the larger root (i.e., jrootðbp1Þj and jrootðbp2Þj).
The rest of the algorithm is exactly the same as the pre-
vious Oðn3 log nÞ algorithm, meaning that the special
substrings of the dominant base pair are compared with
all substrings of the other base pair (see Fig. 8 for an
example).

This enhancement to the algorithm improves the time
complexity to Oðnm2 logðn=mÞÞ, which is bounded by
Oðn3Þ. The intuition behind this improvement is that on
each comparison between two base pairs, we compare
all substrings of the relatively smaller base pair with the
special substrings of the relatively larger base pair (see

Fig. 7. Special substrings example: the special substrings of a base pair,
bp ¼ ða; b; pÞ, with a heavy child base pair, hp ¼ ðx; y; rÞ.

AMIT ET AL.: LOCAL EXACT PATTERN MATCHING FOR NON-FIXED RNA STRUCTURES 225

complete proof in [7]). The space complexity is bounded
by Oðn2Þ, as explained in [7].

6 LOCAL EXACT PATTERN MATCHING FOR

(NESTED, BOUNDED-UNLIMITED) INPUTS

The input to this algorithm consists of two RNA struc-
tures R1 ¼ ðS1; B1Þ and R2 ¼ ðS2; B2Þ, where R1 is a
nested structure and R2 is a bounded-unlimited struc-
ture. The output is the maximal local exact matching set
M defined over R1 and R2.

The algorithm is similar to the Oðn3 log nÞ algorithm
described in Section 4. The difference is that the
bounded-unlimited structure of R2 needs to be handled:
as opposed to the previous algorithm, where each base
can be connected by a bond connection to at most one
other base, in the bounded-unlimited structure it can be
connected to Oð1Þ other bases. Let i be lastðsÞ of substring
s, and let the lastðsÞ be the rightmost base in s, w.l.o.g. If
i is a right endpoint of a base pair bp1 ¼ ðe; i; pÞ 2 R1,
there can be several base pairs in R2 with j being their
right endpoint (e.g., bpk ¼ ðfk; j; qkÞ 2 R2). All of these
base pairs should be considered in the matching between
s and t (see Fig. 9 for examples).

Note that even though R2 has a bounded-unlimited
structure, the output matching structure is always nested.
Hence the only modification that is necessary is to iterate
over all base pairs with right endpoint j and pick the one
that gives the maximal total score.

In an analogous way, the algorithm for extending
the matching outside of the base pairs, as described in
Section 3.3, is also modified to support the bounded-
unlimited structure of R2. Again, on each base pairs
comparison the algorithm compares at most Oð1Þ options
of base pairs matching.

Time Complexity: the only modification to patternMatchðÞ
function is that we compare Oð1Þ base pairs of substring t
with the base pair that starts at lastðsÞ, if such exist. This, of
course, does not add to the overall time complexity analysis.
In a similar way, the modification to the algorithm for com-
puting the maximal extensions does not change its time
complexity.

The total time complexity of the entire algorithm is there-
fore Oðn3 log nÞ.

7 LOCAL APPROXIMATE PATTERN MATCHING FOR

(NESTED, NESTED) INPUTS

In this section we solve the problem of local approximate
pattern matching. The problem is defined as follows:

Given two RNAs, R1 ¼ ðS1; B1Þ and R2 ¼ ðS2; B2Þ with
sizes n and m, resp. (n � m), scoring functions aðÞ and bðÞ,
two numbers k and c, we want to find the set M containing
all matchings with a score greater than c that have at most k
mismatches. i.e,

M ¼ fMjM is a matching with at most k mismatches
and scoreðMÞ � cÞg:

Formally, a mismatch is any ði; jÞ 2 M such that si 6¼ tj.
Note that, as in the previous algorithms, the operation of
arc-breaking is allowed, and furthermore, it is not calcu-
lated as a mismatch.

Again, we find the approximate matchings between each
combination of a base pair from B1 and a base pair from B2,
in increasing order of the base pairs’ spans. The algorithm is
divided into two stages: calculating the approximate match
inside the base pairs (in Section 7.1) and extending it outside
of them (in Section 7.2). The algorithms run in Oðn4k2Þ and
Oðn2k2Þ, respectively. In Section 7.3, we explain how to
modify the algorithm to an Oðn3k2Þ algorithm, and in
Section 7.4, we show how to modify the algorithm to find
local approximate pattern matching between ðNested;
Bounded� UnlimitedÞ RNAs in Oðn3k2 log nÞ time.

7.1 AnOðn4k2Þ Algorithm for Finding the Maximal
Approximate Matching Score Inside the Base
Pairs

The input of the algorithm consists of two RNAs R1 ¼
ðS1; B1Þ and R2 ¼ ðS2; B2Þ, and a number k. The output is
Min table, in which an entry Min

bp1;bp2
ð‘Þ contains the maxi-

mal matching score between the base pairs bp1 2 B1 and
bp2 2 B2 and their inner parts having at most ‘ mismatches
(0 � ‘ � k).

In a similar way to the algorithm for exact matching
(described in Section 3.2), the main procedure of the algo-
rithm computes for every combination of a base pair
bp1 ¼ ða; b; pÞ 2 B1 and a base pair bp2 ¼ ðc; d; qÞ 2 B2, their
maximal approximate matching score by comparing the
two substrings s ¼ ðsa; . . . ; sbÞ and t ¼ ðtc; . . . ; tdÞ that are

Fig. 8. Heavy path decomposition of RNA molecules: R1 contains the
heavy path ð1; 4; 6; 7; UÞ. In addition R1 contains the heavy paths
ð2; 8; 9; AÞ, ð3; GÞ, and 5. In the comparison between 6 2 B1 and E 2 B2

the dominant base pair is 6, whereas in the comparison between 8 2 B1

(or 2 2 B1) and B 2 B2 the dominant base pair is B.

Fig. 9. Bounded-Unlimited base pairs matching: the matching between s

and t may contain b1 and b01 base pairs (case (a)), or b1 and b02 base pairs

(case (b)). Note that in case (a) the crossing base pair b03 is not valid,

thus not considered, whereas in case (b) it might be a part of the

matching.

226 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 11, NO. 1, JANUARY/FEBRUARY 2014

defined over bp1 and bp2, respectively. It is a dynamic pro-
gramming algorithm that computes matchings between
prefixes of the substrings s and t, in increasing order of
their sizes.

For every two substrings s ¼ ðsa; . . . ; siÞ and t ¼
ðtc; . . . ; tjÞ the algorithm computes the Full, Lmatch,
Rmatch, and Score matchings for all of the allowed mis-
matches ‘, 0 � ‘ � k.

Note that when comparing mismatching single bases, the
current score of the matching is actually the score of a previ-
ous matching with ‘� 1mismatches. When comparing base
pairs, there are ‘ options to split the mismatches between
the previous score of the prefixes until the base pairs and
the mismatches inside of them. For all ‘ ð0 � ‘ � kÞ in total
there are Oðk2Þ splits that need to be considered.

We use Scoreða . . . i; c . . . j; ‘Þ to refer to the Score
between substrings s ¼ ðsa; . . . ; siÞ and t ¼ ðtc; . . . ; tjÞ with
at most ‘ mismatches. We refer to Lmatch, Rmatch and
Full properties in a similar way. As an initialization step
we set Fullði; j;�1Þ ¼ Rmatchði; j;�1Þ ¼ Scoreði; j;�1Þ ¼
�1. The values are computed according to the following
equations (in the same order):

Fullða . . . i; c . . . j; ‘Þ

¼ max

Fullða . . . i� 1; c . . . j� 1; ‘Þ þ aði; jÞ
Fullða . . . i� 1; c . . . j� 1; ‘� 1Þ
Fullða . . . e� 1; c . . . f � 1; misÞ

þMin
b1;b2

ð‘�misÞ 80 � mis � ‘;

8>>><
>>>:

(10)

Lmatchða . . . i; c . . . j; ‘Þ

¼ max

Lmatchða . . . i� 1; c . . . j; ‘Þ
Lmatchða . . . i; c . . . j� 1; ‘Þ

Fullða . . . i; c . . . j; ‘Þ;

8><
>:

(11)

Rmatchða . . . i; c . . . j; ‘Þ

¼ max

Rmatchða . . . i� 1; c . . . j� 1; ‘Þ þ aði; jÞ
Rmatchða . . . i� 1; c . . . j� 1; ‘� 1Þ
Rmatchða . . . e� 1; c . . . f � 1;misÞ

þMin
b1;b2

ð‘�misÞ 80 � mis � ‘

0;

8>>>>>><
>>>>>>:

(12)

Scoreða . . . i; c . . . j; ‘Þ

¼ max

Lmatchða . . . i; c . . . j; ‘Þ
Scoreða . . . i� 1; c . . . j� 1; ‘Þ þ aði; jÞ
Scoreða . . . i� 1; c . . . j� 1; ‘� 1Þ
Scoreða . . . e� 1; c . . . f � 1;misÞ

þMin
b1;b2

ð‘�misÞ 80 � mis � ‘;

8>>>>>><
>>>>>>:

(13)

where b1 ¼ ðe; i; rÞ 2 B1 and b2 ¼ ðf; j; wÞ 2 B2.
Mismatches are handled as follows: for each entry

computation (except for Lmatch) either use aði; jÞ score
(when there is a matching between i and j) or don’t
use it, but pay for one mismatch (thus, take the value

from entry ði� 1; j� 1; ‘� 1Þ). In addition, all values
of Min

b1;b2
ðmisÞ are checked with the ðe� 1; f � 1; ‘�misÞ

values.
The value of bðbp1; bp2Þ may also be �1 if there is a mis-

match between the base pairs endpoints. Therefore, in the
total score ofMin

bp1;bp2
ð‘Þ all such mismatches are handled:

Min
bp1;bp2

ð‘Þ

¼ max

Scoreða . . . b; c . . . d; ‘Þ
þbðbp1; bp2Þ if sa ¼ tc and sb ¼ td

Scoreða . . . b; c . . . d; ‘� 1Þ if sa ¼ tc or sb ¼ td

Scoreða . . . b; c . . . d; ‘� 2Þ if sa 6¼ tc and sb 6¼ td:

8>>><
>>>:

(14)

Time Complexity: Each of the computations requires
Oð1Þ time for each single base match and OðkÞ for each
base pair match. This gives a total of Oðn2k2Þ for com-
puting the entire Full, Lmatch, Rmatch, and Score tables.

For each combination of a base pair from B1 and a
base pair from B2, we compute the approximate
matching inside the base pairs in Oðn2k2Þ time, which
gives a total of Oðn2 � n2k2Þ ¼ Oðn4k2Þ time for the entire
algorithm.

7.2 Extending the Approximate Match Outside the
Base Pairs

The calculation of the approximate matching extensions of
the base pairs works in a similar way to the algorithm
described in Section 3.3. The difference is that in both the
preprocessing step (where the auxiliary tables are filled)
and the final step (where the table Mout

bp1;bp2
is filled) we

now compute the scores for any number of mismatches
separately.

In the preprocessing step we compute the maximal
approximate matching extension for every position i 2 R1

and j 2 R2 into two auxiliary tables Rextend and Lextend of
sizes Oðn2kÞ. We further explain the extension to right, the
left extension is symmetric. On each step of the algorithm,
we compute the extension to right starting from index i to
jR1j and from index j to jR2j. An entry Rextendði; j; ‘Þ
denotes the maximal score that can be achieved when com-
paring R1 and R2 starting from indices i in R1 and j in R2,
going from left to right with at most ‘mismatches. It is com-
puted as follows:

Rextendði; j; ‘Þ ¼ max

Rextendðiþ 1; jþ 1; ‘Þ þ aði; jÞ
Rextendðiþ 1; jþ 1; ‘� 1Þ
Rextendðbþ 1; dþ 1;misÞ
þMin

b1;b2
ð‘�misÞ 80 � mis � ‘

0;

8>>>><
>>>>:

(15)

where b1 ¼ ði; b; rÞ 2 B1 and b2 ¼ ðj; d; wÞ 2 B2.

In the final step, the entries Mout
bp1;bp2ð‘Þ, for all bp1 ¼

ða; b; pÞ 2 B1 and bp2 ¼ ðc; d; qÞ 2 B2 and all ‘ with 0 � ‘ � k
are computed. Each of these entries is obtained as the maxi-
mum of Rextendðbþ 1; dþ 1; ‘�misÞþ Lextendða� 1; c�
1;misÞ over allmis such that 0 � mis � ‘.

AMIT ET AL.: LOCAL EXACT PATTERN MATCHING FOR NON-FIXED RNA STRUCTURES 227

Hence, each of the Oðn2kÞ entries requires OðkÞ time to
calculate, which gives a total time complexity of Oðn2k2Þ for
this stage.

Analogously, we combine the entries of Min and Mout to
obtain the final result. Again, we maximize over Min

bp1;bp2ðmisÞ þMout
bp1;bp2ð‘�misÞ for allmis (0 � mis � ‘).

Time Complexity: since the most expensive part of the
computation is the one described in Section 7.1, the total
time complexity of the entire algorithm is Oðn4k2Þ.

7.3 Improving the Algorithm to Run inOðn3k2Þ Time

The main idea of the improved algorithm, is the same idea
that was described in Section 5: we decompose both R1 and
R2 into heavy paths and for each combination of a base pair
from B1 and a base pair from B2 we decide on the dominant
base pair by its root in the heavy path route (see full expla-
nation in Section 5).

In a similar way to the modification done in Section 4, the
substrings being compared are either prefixes (as in the
Oðn4k2) algorithm) or suffixes. Hence, the approximate pat-
tern matching function is extended to include suffixes
comparison.

Time Complexity: the total number of substrings com-
pared in this algorithm is Oðn3Þ (as explained in Section 5),
and each substrings comparison for all k allowed mis-
matches takes Oðk2Þwork (as explained in Section 7.1).

The total time complexity is therefore Oðn3k2Þ. The total
space complexity of the algorithm is Oðn2kÞ.

7.4 Local Approximate Pattern Matching for
(Nested, Bounded-Unlimited) RNAs

The input of this algorithm consists of two RNA structures
R1 ¼ ðS1; B1Þ and R2 ¼ ðS2; B2Þ, where R1 is a nested struc-
ture and R2 is a bounded-unlimited structure, and a number
k. The output is the maximal local approximate pattern
matching that can be achieved when using at most k
mismatches.

The algorithm is similar to the Oðn3 log nÞ algorithm
described in Section 6. The difference is that now we allow
mismatches: in a similar way to the algorithm presented in
Section 7.1, we compute the maximal approximate matching
with the minor change, that now every lastðsÞ, that is an
endpoint of some base pair in B1, can be compared with a
constant number of base pairs in B2, instead of at most 1
base pair in the ðNested;NestedÞ version.

In an analogous way, the algorithm for extending the
approximatematching outside of the base pairs, as described
in Section 7.2, is modified to support the bounded-unlimited
structure of R2. Again, on each base pairs comparison the
algorithm compares at most Oð1Þ options of base pairs
matching.

Time Complexity: the only modification to the approxi-
mate pattern matching function is that we compare Oð1Þ
base pairs of substring t with the base pair that starts at
lastðsÞ, if such exist. This, of course, does not add to the
overall time complexity analysis. In a similar way, the modi-
fication to the algorithm for computing the maximal exten-
sions does not change its time complexity.

The total time complexity of the entire algorithm is there-
fore Oðn3k2 log nÞ, and the total space complexity of the
algorithm is Oðn2kÞ.

8 FINDING THE MOST SIMILAR SIBLING

SUBSTRUCTURES

The most similar subforest problem was introduced in [12]
as follows:

Given an ordered labeled forest F (“the target forest”)
and an ordered labeled forest G (“the pattern forest”),
the most similar subforest problem is to find a subfor-
est F’ of F such that the distance between F’ and G is
minimum over all possible F’.

The definitions in [12] are presented for forests, here we
translate them to arc-annotated sequence representations.
Note that in this section we assume that the RNA structure
is nested. We start with definitions relevant to this problem
and continue with the algorithm presentation.

8.1 Definitions

Definition 7 (Simple substructure). A simple substructure of
RNA R is a set of positions SUBs ¼ a; . . . ; bh i such that
8a < i < b both endpoints of the parent of i are in SUBs and
ða; b; pÞ is a base pair in B. We denote the base pair
bp ¼ ða; b; pÞ 2 B as the root of the substructure. In the case
where the set SUBs contains only one single base, i.e.,
SUBs ¼ ih i, we denote the root of the substructure with i.

In the simple substructure with root r, not all the single bases
and base pairs contained in r must be included in the sub-
structure (see Fig. 10).

Definition 8 (Sibling substructure). A sibling substructure of
RNA R is a set of simple substructures whose roots are
siblings.

Note that if we add the parent of the root of any sibling
substructures, we get a simple substructure.

The most similar substructure problem definition is as fol-
lows: Given two nested RNAs, R1 ¼ ðS1; B1Þ and
R2 ¼ ðS2; B2Þwith sizes n andm resp. (m < n), and scoring
functions aðÞ and bðÞ, we want to find a sibling substructure

Fig. 10. Simple and sibling substructures. Examples for simple and sib-
ling structures. Each substructure is presented as both tree and arc
annotated substring. The substructures are shadowed in both
representations.

228 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 11, NO. 1, JANUARY/FEBRUARY 2014

of R1 that has the minimum edit distance to R2 over all pos-
sible sibling substructures of R1.

8.2 The Algorithm

The input to the algorithm consists of two fixed RNAs,
R1 ¼ ðS1; B1Þ and R2 ¼ ðS2; B2Þ, and the output is the
table S, in which an entry Sbp1;bp2 contains the minimum
edit distance between a sibling substructure of a base
pair bp1 ¼ ða; bÞ 2 B1 and a base pair bp2 ¼ ðc; dÞ 2 B2.
This problem differs from the previously discussed prob-
lems in two main aspects: the input RNA molecules are
in fixed structure (this means that arc-breaking operation
is not allowed, thus base pairs cannot be treated as sin-
gle bases), and the output is restricted to a sibling sub-
structure of R1 rather than patterns of both R1 and R2.
This restriction is supported by allowing to delete single
bases or base pairs from R1 with no additional cost.
Another difference is that this algorithm finds the mini-
mal edit distance cost instead of the maximal matching,
thus, the cost functions aðÞ and bðÞ are changed to return
0 for exact matches and 1 for mismatches or deletions. In
addition, the value of aði; jÞ ¼ 1 when i or j are not sin-
gle bases. We denote the deletion of a single base j from
R2 as að�; jÞ (with að�; jÞ ¼ 1), and the deletion of a
base pair bp2 from R2 as bð�; bp2Þ (with bð�; bp2Þ ¼ jbp2j).
For simplicity, we start with an Oðn4Þ algorithm.

The main procedure of the algorithm computes the
minimal edit distance between a sibling substructure of
substring s ¼ ðsa; . . . ; siÞ and a substring t ¼ ðtc; . . . ; tjÞ
into Edit auxiliary table. The value of Editða . . . i; c . . . jÞ
is computed as follows:

Editða . . . i; c . . . jÞ

¼ min

Editða . . . i� 1; c . . . jÞ nndelete a leaf from T1

Editða . . . i; c . . . j� 1Þ þ að�; jÞ nndelete a leaf from T2

Editða . . . i� 1; c . . . j� 1Þ þ aði; jÞ nnmatch leaves

Editða . . . e� 1; c . . . jÞ nndelete an internal node from T1

Editða . . . i; c . . . f � 1Þ þ bð�; b2Þ nndelete an internal node from T2

Editða . . . e� 1; c . . . f � 1Þ þ Sb1;b2 nnmatch internal nodes;

8>>>>>>>><
>>>>>>>>:

ð16Þ
where b1 ¼ ðe; iÞ 2 B1 and b2 ¼ ðf; jÞ 2 B2, and the initial val-

ues Editða . . . a� 1; c . . . jÞ and Editða . . . i; c . . . c� 1Þ are set

to 0.
Eventually, the value in S table is set to: Sbp1;bp2 ¼

Editða . . . b; c . . . dÞ.
Note that when a single base (or a base pair) is deleted

from substring s, there is no extra penalty for the operation,
whereas, when the deletion is from substring t, the function
að�; jÞ (or bð�; bp2Þ) is added to the Edit score. The reason
is that every such deletion from s does not break the sibling
substructure of s, and hence it does not increase the edit
distance score. Another observation is that the last expres-
sion in the equation is the previously computed value Sb1;b2

for some smaller span base pairs b1 ¼ ðe; i; rÞ 2 B1 and
b2 ¼ ðf; j; wÞ 2 B2.

In a similar way to the improved algorithm in Section 4,
we can decompose R1 into heavy paths and compare only
the special substrings of R1 with all substrings of R2. If we
use the technique of [7], as described in Section 5, we can
improve the number of substrings being compared to Oðn3Þ
(instead of Oðn4Þ in this algorithm).

Time Complexity: The algorithm compares the base pairs
in increasing order of their spans, and their substrings in
increasing order of their sizes. Thus, each sub problem of
the expressions in the main procedure is already calculated,
which gives constant time work for each expression. There-
fore, if we use the technique described in Section 5, we get a
total time complexity of Oðn3Þ for computing the most simi-
lar substructure between two nested RNAs. The space com-
plexity is, again, bounded by Oðn2Þ.

ACKNOWLEDGMENTS

The authors would like to thank Oren Weimann for very
helpful discussions and suggestions. In addition, they
would also like to thank the anonymous reviewers for
helpful comments. Mika Amit was partially supported by
the Israel Science Foundation grant 347/09 and DFG. Rolf
Backofen, Steffen Heyne, Mathias M€ohl, Christina Otto
and Sebastian Will were partially supported by the Ger-
man Research Foundation (BA 2168/3-1 and MO 2402/1-
1). Gad M. Landau was partially supported by the US
National Science Foundation Award 0904246, Israel Sci-
ence Foundation grant 347/09, Grant No. 2008217 from
the United States-Israel Binational Science Foundation
(BSF) and DFG. A preliminary version appeared in the
proceeding of CPM 2012 [1].

REFERENCES

[1] M. Amit, R. Backofen, S. Heyne, G.M. Landau, M. M€ohl, C.
Schmiedl, and S. Will, “Local Exact Pattern Matching for Non-
Fixed RNA Structures,” Proc. 23rd Ann. Symp. Combinatorial Pat-
tern Matching, pp. 306-320, 2012.

[2] R. Backofen, S. Chen, D. Hermelin, G.M. Landau, M.A. Roytberg,
O. Weimann, and K. Zhang, “Locality and Gaps in RNA
Comparison,” J. Computational Biology, vol. 14, no. 8, pp. 1074-
1087, 2007.

[3] G. Blin, M. Crochemore, and S. Vialette, Algorithmic Aspects of
ARC-Annotated Sequences, pp. 113-127, John Wiley & Sons, 2011.

[4] P. Bille, “A Survey on Tree Edit Distance and Related Problems,”
Theoretical Computer Science, vol. 337, no. 1-3, pp. 217-239, 2005.

[5] R. Backofen, G.M. Landau, M. M€ohl, D. Tsur, and O. Weimann, “
Fast RNA Structure Alignment for Crossing Input Structures,”
Proc. 20th Ann. Symp. Combinatorial Pattern Matching, pp. 236-248,
2009.

[6] J. Couzin, “Small RNAs Make Big Splash,” Science, vol. 298,
no. 5602, pp. 2296-2297, 2002.

[7] E.D. Demaine, S. Mozes, B. Rossman, and O. Weimann, “An
Optimal Decomposition Algorithm for Tree Edit Distance,” ACM
Trans. Algorithms, vol. 6, no. 1, pp. 2:1-2:19, 2009.

[8] S. Dulucq and H. Touzet, “Decomposition Algorithms for the Tree
Edit Distance Problem,” J. Discrete Algorithms, vol. 3, no. 2-4,
pp. 448-471, 2005.

[9] P.A. Evans, “Algorithms and Complexity for Annotated Sequence
Analysis,” PhD thesis, Univ. of Alberta, 1999.

[10] T. Jiang, G. Lin, B. Ma, and K. Zhang, “A General Edit Distance
Between RNA Structures,” J. Computational Biology, vol. 9, no. 2,
pp. 371-388, 2002.

[11] T. Jiang, G. Lin, B. Ma, and K. Zhang, “The Longest Common Sub-
sequence Problem for Arc-Annotated Sequences,” J. Discrete Algo-
rithms, vol. 2, no. 2, pp. 257-270, 2004.

[12] J. Jansson and Z. Peng, “Algorithms for Finding a Most Similar
Subforest,” Theory of Computing System, vol. 48, no. 4, pp. 865-887,
2011.

[13] T. Jiang, L. Wang, and K. Zhang, “Alignment of Trees—An Alter-
native to Tree Edit,” Theoretical Computer Science, vol. 143, no. 1,
pp. 137-148, 1995.

[14] P.N. Klein, “Computing the Edit-Distance between Unrooted
Ordered Trees,” Proc. Sixth Ann. European Symp. Algorithms,
pp. 91-102, 1998.

AMIT ET AL.: LOCAL EXACT PATTERN MATCHING FOR NON-FIXED RNA STRUCTURES 229

[15] G.H. Lin, Z.Z. Chen, T. Jiang, and J. Wen, “The Longest Common
Subsequence Problem for Sequences with Nested Arc
Annotations,” J. Computer and System Sciences, vol. 65, no. 3,
pp. 465-480, 2002.

[16] G.M. Landau and U. Vishkin, “Fast Parallel and Serial Approxi-
mate String Matching,” J. Algorithms, vol. 10, no. 2, pp. 157-169,
1989.

[17] P.B. Moore, “Structural Motifs in RNA,” Ann. Rev. of Biochemistry,
vol. 68, pp. 287-300, 1999.

[18] M. M€ohl, S. Will, and R. Backofen, “Lifting Prediction to Align-
ment of RNA Pseudoknots,” Proc. 13th Ann. Int’l Conf. Research in
Computational Molecular Biology, pp. 285-301, 2009.

[19] S. Siebert and R. Backofen, “A Dynamic Programming Approach
for Finding Common Patterns in RNAs,” J. Computational Biology,
vol. 14, no. 1, pp. 33-44, 2007.

[20] S. Schirmer and R. Giegerich, “Forest Alignment with Affine Gaps
and Anchors,” Proc. 22nd Ann. Conf. Combinatorial Pattern Match-
ing, pp. 104-117, 2011.

[21] C. Schmiedl, M. M€ohl, S. Heyne, M. Amit, G.M. Landau, S. Will,
and R. Backofen, “Exact Pattern Matching for RNA Structure
Ensembles,” Proc. 16th Int’l Conf. Research in Computational Molecu-
lar Biology (RECOMB ’12), pp. 245-260, 2012.

[22] D.D. Sleator and R.E. Tarjan, “A Data Structure for Dynamic
Trees,” J. Computer and System Sciences, vol. 26, no. 3, pp. 362-391,
1983.

[23] K.C. Tai, “The Tree-To-Tree Correction Problem,” J. ACM, vol. 26,
no. 3, pp. 422-433, 1979.

[24] K. Zhang and D. Shasha, “Simple Fast Algorithms for the Editing
Distance between Trees and Related Problems,” SIAM J. Comput-
ing, vol. 18, no. 6, pp. 1245-1262, 1989.

[25] K. Zhang, L. Wang, and B. Ma, “Computing Similarity between
RNA Structures,” Proc. 10th Ann. Symp. Combinatorial Pattern
Matching, pp. 281-293, 1999.

Mika Amit received the MSc degree in computer
science from the University of Haifa in 2012. She
is working toward the PhD degree in the
Department of Computer Science, University of
Haifa, Israel. Her research interests include
computational biology, string algorithms, and
data structures.

Rolf Backofen studied computer science at the
University of Erlangen, and received the PhD
degree in computer science from the University
of Saarland in December 1994, where he worked
at the German Research Center for Artificial
Intelligence. He received the habilitation from the
University Munich in February 2000. He was the
chair for bioinformatics at the University of Jena
from November 2001 till June 2005. After declin-
ing an offer for a full professorship at the Univer-
sity of Linz in 2004, he became the chair for

Bioinformatics at the University of Freiburg, Institute of Computer Sci-
ence. He is a coauthor of the book Computational Molecular Biology: An
Introduction (Wiley&Sons, Mathematical and Computational Biology
Series, 2000). His research is concented around RNA bioinformatics,
where his lab developed several leading tools for the detection and anal-
ysis of non-coding RNA, and for the investigation of RNA-based
regulation.

Steffen Heyne received the master’s degree
in bioinformatics from the University of Jena,
Germany. He is a dipl.-bioinformatician (MSc)
at the University of Freiburg, Germany. His
research interest include local RNA motifs and
clustering of RNA sequences. While currently fin-
ishing the PhD degree, he recently joined the
Max-Planck-Institute of Immunobiology and Epi-
genetics in Freiburg, Germany.

Gad M. Landau received the PhD degree in
computer science from Tel Aviv University in
1987. His research interests include string algo-
rithms, data structures and computational biol-
ogy. He is currently a full professor in the
Department of Computer Science at the Univer-
sity of Haifa and a research professor in the
Department of Computer Science and Engineer-
ing at NYU Polytechnic School of Engineering.

Mathias M€ohl received the doctoral degree in
computer science from Saarland University. He
has just quit his academic career and is now the
founder and CEO of mamoworld. As postdodc-
toral researcher at Freiburg University, his
research interests included RNA bioinformatics
and dynamic programming.

Christina Otto received the diploma in bioinfor-
matics from the University of Tuebingen, Ger-
many. She is currently working toward the PhD
degree in Prof. Backofen’s chair for Bioinformat-
ics in Freiburg, Germany. Her research interests
include the design and implementation of efficient
algorithms for RNA-related tasks and sparsifica-
tion techniques.

Sebastian Will received the PhD degree in
computer science from the University of Jena.
He is currently a post-doctoral researcher at
the University Leipzig, where he is working in
the bioinformatics lab of Peter Stadler. In
2005-2012, he was appointed assistant profes-
sor (“Akademischer Rat”) at the University Frei-
burg with Rolf Backofen. In 2010-2011, he
worked as a post-doctoral researcher with Bon-
nie Berger at the Massachusetts Institute of
Technology (MIT), Cambridge, Massachusetts,

holding a research fellowship of the German Research Foundation.
His main research interests are in algorithmic bioinformatics with a
focus on RNA structure and comparative analysis.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

230 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 11, NO. 1, JANUARY/FEBRUARY 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

