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RNA Tools

Individual post processing steps that aid result interpretation. The results can

Overview

Due to novel experimental methods on the genomic scale, biologists are be viewed In the browser and/or downloaded for further local analysis or
struggling with ever increasing magnitudes of data that can, in many cases, archiving. Individual job descriptions can be entered by the user, thus
only be harnessed by previous bioinformatics analyses. Currently many tools alleviating personal online archiving. Furthermore, results are stored for 30
are either only accessible on the command line and web servers tend to lack days. The Frel
easy usability. The Freiburg RNA Tools webserver aims at supplying an easy RNA analysis.
to use and comprehensive web resource for RNA analysis, also for non- (alignment anc
adept users. We designed a webserver framework that simplifies the access (structure alignment) [4], ExpaRNA (exact matching) [5], INFORNA (sequence
to our RNA analysis tools. The tools are accompanied by extensive help design) [6], IntaRNA (RNA-RNA Interaction) [7/] and CRISPRmap (CRISPR
pages and direct help requests are rapidly answered. All tools incorporate conservation) [8]. The addition of several further tools Is under construction.

The tools are available at: http://rna.informatik.uni-freiburg.de.
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CopraRNA & IntaRNA
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CopraRNA [1] is a tool for SRNA target prediction. It computes whole genome Searching for functionally enriched terms within the top
target predictions by combination of distinct whole genome IntaRNA [7] predictions, regularly yields insight into the correct in vivo function
predictions derived from homologous sRNAs in different organisms. The of an investigated sRNA. This alleviates construction of functional
images show an exemplary output for the well studied, amino acid related, networks. See the examples below (GcvB, MicF, RyhB).
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The density plots above, give a clear impression of the interacting regions
within the mRNAs and sRNAs. Furthermore the degree of conservation
throughout the organisms participating in the analysis becomes clearer.

In some cases the interest is solely focused on single
predictions for two or more interacting RNAs, or no
homologous sRNAs are present for a whole genome target
prediction. In these cases we suggest using IntaRNA [7].

ExpaRNA CRISPRmap

ExpaRNA [5] is a tool for very fast comparison of RNAs by exact
local matches. Instead of computing a full sequence-structure
alignment, ExpaRNA efficiently computes the best arrangement of
sequence-structure motifs common to two RNAs. Finding identical
motifs is not directly addressed by sequence-structure alignment
tools and they may remain hidden. In addition, the predicted set of
motifs can be used as anchor constraints to speed-up and guide
Sankoff-style alignment methods like LocARNA [2].

evolution, however, is essential to complete the picture.

some distinct conservation patterns.

The CRISPR-Cas system degrades foreign genetic elements and is wide-spread in bacteria and archaea. Central to
CRISPR-Cas immune systems are repeated RNA sequences that serve as Cas-protein-binding templates. Their
classification is mainly based on the architectural composition of associated Cas proteins; directly considering repeat

We compiled the largest dataset of CRISPRs to date; performed comprehensive, independent clustering analyses; and
identified a novel set of 40 conserved sequence families and 33 potential structure motifs for Cas-endoribonucleases with
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The figure shows annotated structures from the ExpaRNA output.
Regions of exact pattern matches have the same color. Shown
are two bacterial RNase~P RNAs from Escherichia coli and
Bacillus subtilis.
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Employing an extensive dataset of 18 enterobacterial
SRNAs and 102 experimentally verified interactions we
compared CopraRNA to 3 other state of the art SRNA
target prediction approaches. CopraRNA yielded
considerably superior results with respect to sensitivity.
Furthermore CopraRNA appears to be at least as
reliable as pulse expression microarray experiments.

cas genes CRISPR RNA

CRISPRmap [8] is an easy-to-use web server that
provides an automated assignment of newly
sequenced CRISPRs to our classification systems
and enables more informed choices on future
hypotheses in CRISPR-Cas research.

As a visual map of both bacterial and archaeal
CRISPR domains, we combined our categorisation
Into repeat families and motifs with a hierarchical
tree based on sequence-and-structure similarities.
This CRISPRmap tree details relationships between
Individual repeats and whole families and motifs.

Left: Highlights the advantage of independent
clustering approaches in the CRISPRmap tree.

(A) CRISPRs in the largest sequence family, F1, are
mostly unstructured; however, for 50 CRISPRs also
a conserved structure motif, M10, was identified.

(B) Structure motif M28 could not be identified by
sequence conservation, but has been verified via
mutational analyses and contains many
compensatory base pair mutations (black squares).

INFORNA
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LocARNA [2] is a tool for multiple alignment of RNA molecules. LocARNA requires only RNA
sequences as input and will simultaneously fold and align the input sequences. LocARNA
outputs a multiple alignment together with a consensus structure. For the folding it makes
use of a very realistic energy model for RNAs which is also employed by RNAfold of the
Vienna RNA package (or mfold). For the alignment it features RIBOSUM-like similarity
scoring and realistic gap cost. MARNA [4] is also offered, yet LocARNA supersedes it.

In contrast to LocCARNA [2], CARNA [3] does not pick the most
likely consensus structure, but computes the alignment that fits
best to all likely structures simultaneously. Hence, CARNA is
particularly useful when aligning RNAs like riboswitches, which
have more than one stable structure. Also, CARNA is not limited
to nested structures, but is able to align arbitrary pseudoknots.
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Types of Pairs

Compatible base pairs are colored, where the hue shows the number of
different types C-G, G-C, A-U, U-A, G-U or U-G of compatible base pairs in

ance (e.g. in half of the sequences the dot has probal and in the other half it has prob: e red
means o variance at al (the dot has the same probabill tyin all sequences ) the corresponding columns. In this way the hue shows sequence conservation
[ [ ]]] of the base pair. The saturation decreases with the number of incompatible
0 0.125 025 0375 05 0625 075 0.875 1 base pairs. Thus, it indicates the structural conservation of the base pair.

{in the designed sequence)

Parameters of the Stochastic Local Search

RNA secondary structure.

{Sequences might be very similar, which is due to the rather fixed initializing sequence.)

Results:

1. Designed Sequence:

Objective function: | mfe (default) v
Probability for accepting bad mutations:

Pre-sort candidates for mutation: ® yes (defautt) O no

MNumber of Designed Sequences: EI

Designed sequence:
Target structure:

Constraint violations:

Free energy (target structure):

to the target structure:

mfe structure: {.svg figure)

The images display an
example alignment of
multiple tRNA sequences
and a visualization of the
consensus structure.
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CARNA optimizes all structural similarities
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simultaneously, for example across an entire RNA structure
ensemble. Even when compared to already costly Sankoff-style
alignment, CARNA solves an intrinsically much harder problem
by applying advanced, constraint-based, algorithmic techniques.

Input

Compatible base pairs are colored, where the hue shows the number of different types C-G, G-C,
A-U, U-A, G-U or U-G of compatible base pairs in the corresponding columns. In this way the hue
shows sequence conservation of the base pair. The saturation decreases with the number of
incompatible base pairs. Thus, it indicates the structural conservation of the base pair.
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