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Abstract. We propose a two-stage optimization approach for protein
folding simulation in the FCC lattice, inspired from the phenomenon of
hydrophobic collapse. Given a protein sequence, the first stage of the
approach produces compact protein structures with the maximal num-
ber of contacts among hydrophobic monomers, using the CPSP tools for
optimal structure prediction in the HP model. The second stage uses
those compact structures as starting points to further optimize the pro-
tein structure for the input sequence by employing simulated annealing
local search and a 20 amino acid pairwise interactions energy function.
Experimental results with PDB sequences show that compact structures
produced by the CPSP tools are up to two orders of magnitude better,
in terms of the pairwise energy function, than randomly generated ones.
Also, initializing simulated annealing with these compact structures, pro-
duces better structures in fewer iterations than initializing with random
structures. Hence, the proposed two-stage optimization outperforms a
local search procedure based on simulated annealing alone.

1 Introduction

The question of how proteins fold and whether we can efficiently predict their
structure remain the most challenging open problems in modern science. Proteins
regulate almost all cellular functions in an organism. They are composed of amino
acids connected in a linear chain. These chains fold in three-dimensional space.
The 3D structure of proteins, also referred to as tertiary structure, plays a key
role in their functionality. According to Anfinsen’s thermodynamic hypothesis,
proteins fold into states of minimum free energy and their tertiary structure can
be predicted from the linear sequence of amino acids [2]. In nature, proteins
fold very rapidly, despite the enormous number of possible configurations. This
observation is known as the Levinthal paradox and implies that protein folding
can not be a random search for the global minimum [20].

One of the driving forces of folding, mainly in globular proteins, is the hy-
drophobic interaction, which tends to pack hydrophobic amino acids in the
center of the protein. This effect can be captured by the HP model, a coarse
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grained model, where the twenty different amino acids are classified into two
classes, namely hydrophobic and polar [13]. Protein structure prediction is an
NP-complete problem in the HP model [9]. Consequently, one can resort to con-
straint programming and stochastic local search to tackle this problem. Both
techniques are commonly used to approach NP-complete problems.

Previous approaches using local search methods for protein structure predic-
tion include tabu search [19, 6], simulated annealing [3], and a population-based
local search method [16]. Constraint programming techniques have been suc-
cessfully applied to the protein structure prediction [4,11] as well as to resolve
protein structures from NMR data [18].

The constraint programming approach, employed in [4], predicts the optimal
structure of a protein in the HP model in very short computational time. Nev-
ertheless, it is computationally intractable for more elaborate energy functions
such as a 20 amino acid pairwise interactions energy function. Local search ap-
proaches, on the other hand, work well in practice for elaborate energy functions,
despite the large number of iterations required. In this paper we aim to combine
the advantages of both approaches.

We introduce a protein folding simulation procedure that employs two stages
of optimization in order to find structures of minimum energy. The input protein
sequence first collapses to a compact structure and then a slower annealing pro-
cedure follows to find the minimum energy structure. Specifically we employ the
Constraint-based Protein Structure Prediction (CPSP) tools introduced in [22]
to obtain an HP model conformation with maximal number of contacts among
hydrophobic monomers in the FCC lattice. Then the CPSP output is given as
input to a simulated annealing-based local search procedure which employs the
pairwise energy function introduced in [7]. The choice of the FCC lattice is mo-
tivated by the fact that it was shown to yield very good approximations of real
protein structures [23]. Also it does not suffer from the bipartiteness of the cubic
lattice, which allows interactions only between amino acids of opposite parity in
the chain. The two-stage optimization introduced in this paper, produces better
conformations with less computational cost than local search alone that starts
with randomly generated initial structures.

This paper is organized as follows. In Section 2 we first give the outline of the
two-stage optimization as well as useful definitions for the detailed illustration of
the method. In Section 3 we present experimental results for benchmarks along
with a discussion. Finally, Section 4 contains the concluding remarks.

2 The Two-Stage Optimization

The approach works in three phases, namely, the sequence conversion, the con-
straint programming and the local search. The sequence conversion phase takes
as input a protein sequence in the 20 letter amino acid alphabet and returns
a converted sequence in the HP model. The resulting sequence consists of two
kinds of amino acids, namely, hydrophobic and polar. Let us denote the input se-
quence as S,rig and the resulting sequence as Sgp. The constraint programming
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Fig. 1. An outline of the two-stage optimization.

phase is the first stage of optimization and utilizes the CPSP tool HPstruct for
optimal protein structure prediction in the HP model, introduced in [22]. The
input to this tool is a sequence Sy p. For each sequence Sy p, the tool provides
a set of structures in the FCC lattice with maximal number of H-monomer con-
tacts. Let us denote this set of structures as Lgp to distinguish it from a set of
randomly generated structures L,4,q. The final phase is the local search, which
is also the second stage of optimization. It employs the simulated annealing algo-
rithm with the pull-moves for triangular lattices and optimizes a more complex
energy function. During this phase, each sequence Sy p is converted back to its
original composition S,4, first. Then, the local search is executed for a number
of iterations with an initial structure from Lgzp. In the subsections below we
analyze each phase of the approach.

2.1 Sequence Conversion

The conversion of a 20 letter amino acid sequence into an HP sequence utilizes
the approach in [10]. This approach establishes a classification of the 20 amino
acids into hydrophobic and polar as the result of a hierarchical clustering applied
to the Miyazawa-Jernigan [21] pairwise contact values. In Table 1 we give the
classification of amino acids used in the sequence conversion phase.

Hydrophobic | Polar

C - Cysteine H - Histidine N - Asparagine

F - Phenylalanine|A - Alanine D - Aspartic Acid
I - Isoleucine T - Threonine E - Glutamic acid
L - Leucine G - Glycine K - Lysine

M - Methionine |P - Proline

V - Valine S - Serine

W - Trytophan |Q - Glutamine

Y - Tyrosine R - Arginine

Table 1. Amino acid classification for sequence conversion.
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2.2 Constraint-based Optimal Structure Prediction in HP-models

The Counstraint-based Protein Structure Prediction (CPSP) approach enables
the calculation of optimal structures in 3D HP-models [22]. Using its implemen-
tation HPstruct [22], we enumerate for a given sequence Sy p a representing set
of optimal structures Ly p, all showing a compact hydrophobic core and shape.

The CPSP approach utilizes a database of precalculated (sub)optimal H-
monomer placements (H-cores) [5]. These are sequence independent, defined by
the number of H-monomers and the lattice. For a sequence Sgp, a self-avoiding
walk describing constraint satisfaction problem is formulated that in addition
constrains the H-monomers of the sequence to a given H-core. Any solution yields
an optimal solution of the optimal structure prediction problem [4]. A screen
through all appropriate H-cores enables the prediction of all optimal structures.
For details on the CPSP approach see [4].

2.3 Local Search

Simulated annealing was introduced as an optimization tool independently in
[17,8] (see also [1]). The algorithm traverses the space of conformations employ-
ing the pull-move neighborhood relation in triangular lattices [6]. The objective
function to be optimized is the empirical contact potential described in [7], which
is a 20 amino acid pairwise interactions energy function. A logarithmic cooling
schedule is employed which was shown to converge to optimal solutions [14].

Fig. 2. 1CTF: (a) Structure produced by CPSP tool. (b) Predicted structure by two-
stage optimization.

3 Experiments

Let us now describe the benchmark selection and the protocol we followed in our
experiments. The protocol serves the purpose of a fair performance comparison



PDB id: 4RXN
length: 54
S MKKYTCTVCGYIYDPEDGDPDDGVNPGTDFKDIPDDWVCPL
°r9:  CGVGKDEFEEVEE
Sup: HPPHPHPHHPHHHPPPPPPPPPPHPPPPPHPPHPPPHHHP
) HHPHPPPPHPPHPP
PDB id: 1IENH
length: 54
S RPRTAFSSEQLARLKREFNENRYLTERRRQQLSSELGLNEA
ortgr QIKIWFQNKRAKI
Sup: PPPPPHPPPPHPPHPPPHPPPPHHPPPPPPPHPPPHPHPPP
) PHPHHHPPPPPPH
PDB id: 4PTI
length: 58
S RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNF
°ortg KSAEDCMRTCGGA
Sup: PPPHHHPPPHPPPHPPPHHPHHHPPPPPHHPPHHHPPHPPPPPPH
) PPPPPHHPPHPPP
PDB id: 2IGD
length: 61
S MTPAVTTYKLVINGKTLKGETTTKAVDAETAEKAFKQYANDNGVDGVW
°rtg: TYDDATKTFTVTE
Sup: HPPPHPPHPHHHPPPPHPPPPPPPPHPPPPPPPPHPPHPPPPPHPPHH
) PHPPPPPPHPHPP
PDB id: 1YPA
length: 64
S MKTEWPELVGKAVAAAKKVILQDKPEAQIIVLPVGTIVITMEYRIDRVRLFVD
°rt9s KLDNIAQVPRVG
Sup: HPPPHPPHHPPPHPPPPPHHHPPPPPPPHHHHPHPPHHPHPHPHPPHPHHHP
) PHPPHPPHPPHP
PDB id: 1R69
length: 69
S SISSRVKSKRIQLGLNQAELAQKVGTTQQSIEQLENGKTKRPRFLPELASALG
ortgs VSVDWLLNGTSDSNVR
Sup: PHPPPHPPPPHPHPHPPPPHPPPHPPPPPPHPPHPPPPPPPPPHHPPHPPPH
) PHPHPHHHPPPPPPPHP
PDB id: 1CTF
length: 74
S AAEEKTEFDVILKAAGANKVAVIKAVRGATGLGLKEAKDLVESAPAALKEGVSK
°rt9:  DDAEALKKALEEAGAEVEVK
Sup: PPPPPPPHPHHHPPPPPPPHPHHPPHPPPPPHPHPPPPPHHPPPPPPHPPPHPP
) PPPPPHPPPHPPPPPPHPHP

Table 2. Benchmark sequences from Protein Data Base (PDB) and the derived HP-sequences.

between the two-stage optimization presented above and an optimization proce-
dure, based on local search alone. Although the new approach involves the CPSP
tool in addition to local search, in practice the CPSP tool’s runtime is very short
and can be neglected [22]. Thus, the performance of each method depends on
the energy reached, given a limited number of iterations for the local search. In
other words, we examine the performance of simulated annealing with Lyp as
the set of initial structures versus its performance with a randomly generated
set of initial structures L,qnd-

Table 2 shows the benchmark sequences that we used for our experiments
and their corresponding derived HP sequences. Benchmarks 4RXN, 4PTI, 1R69
and 1CTF are taken from [7]. In [7], the authors show that the empirical contact
potential we employ in our approach, is able to discriminate the native structures
of these 4 benchmarks. Benchmarks 1IENH, 2IGD and 1YPA are taken from [11].



PDB id. Length Method Avg S.E. Avg F.E. B.E. Avglt.
SA-only  -2.405 -161.625 -165.401 1,019,588

4RXN o 2-stage -140.377 -164.483 -167.781 816,844
IENH 54 SA-only  -2.395 -149.456 -152.747 926,785
2-stage -127.347 -151.36 -153.098 904,368
APTI 58 SA-only -3.4799 -208.969 -215.698 1,056,287
2-stage -179.196 -210.357 -212.500 652,600
2IGD 61 SA-only -2.5611 -178.941 -180.893 1,160,557
2-stage -163.201 -182.564 -183.205 706,773
1YPA 64 SA-only -3.1447 -252.556 -256.017 1,004,750
2-stage -236.895 -256.504 -257.81 1,142,827
1R69 69 SA-only  -3.055 -202.338 -215.166 1,073,051
2-stage -188.966 -216.708 -219.402 1,001,264
LOTF 74 SA-only  -1.804 -221.713 -228.921 1,176,490

2-stage -176.088 -231.225 -233.86 1,043,517
Avg S.E. - Average Start Energy
Avg F.E. - Average Final Energy
B.E. - Best Energy Observed
Avg It. - Average Iterations

Table 3. Comparison between the two-stage optimization and the local search alone.

For each protein sequence we performed 10 independent local search runs
starting with random initial structures (L,qnq). Then we performed 10 indepen-
dent runs for the two-stage approach where the initial structures for the local
search phase are taken from the CPSP tool HPstruct, namely, the set of struc-
tures Ly p. The number of initial structures in Ly p per benchmark was limited
to 10 by setting approprietly the argument -maxSol for HPstruct. Each struc-
ture was used to initialize an independent run of simulated annealing for the
two-stage approach. The initial temperature for simulated annealing in both ap-
proaches was set equal to D *1n(2), where D is an estimation for the maximum
depth of local minima of the underlying energy landscape. In a similar fashion
to [3], D was set equal to n?/3/c, where n is the sequence length and ¢ was
chosen to be 1.5. Moreover, the maximum number of iterations of each run in
local search phase was limited to 1,500,000 for both approaches.

In Table 3, for each protein sequence, the first row corresponds to the results
observed from local search alone, whereas the second row corresponds to the
results observed from the two-stage optimization. Figure 2 shows the best initial
structure provided by the CPSP tools and the best structure obtained by the
two-stage optimization for benchmark 1CTF.

As we can see in Table 3, the average energy of Ly p structures for the em-
pirical contact potential is up to two orders of magnitude lower than the average
energy of L,,nq structures. We observe that, given the same maximum iteration
limit to both approaches, the two-stage optimization always leads to conforma-
tions of lower energy on average compared to simulated annealing alone. Also,
the two-stage optimization reached lower best energy conformations within the



time limit for all benchmarks except 4PTI. Moreover, it requires on average
less number of iterations to produce conformations within the average final en-
ergy level, except for benchmark 1YPA. In general, the two-stage optimization
approach outperforms simulated annealing alone, since it reaches better final
conformations in fewer iterations for the majority of benchmarks.

4 Conclusions

In this paper we introduced a two-stage optimization approach for protein folding
simulation which combines the advantages of Constraint-based Protein Structure
Prediction (CPSP) and local search. CPSP is very efficient for the HP model
but computationally infeasible for a 20 amino acid pairwise interactions energy
function. At the same time, local search methods are applicable to the problem,
despite the considerable amount of computational effort required. Experimen-
tal results with PDB sequences show that the CPSP tool HPstruct produces
compact structures, whose energy for the pairwise energy function is up to two
orders of magnitude better than the energy of a randomly generated structure.
Further experimentation with a simulated annealing-based local search proce-
dure starting from these compact structures, shows that better structures are
obtained in fewer iterations compared to simulated annealing with a random
initialization. Hence, the proposed two-stage optimization outperforms a local
search procedure based on simulated annealing alone.
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