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ABSTRACT
MicroRNAs (miRNAs) can serve as activation signals for membrane receptors, a recently discovered 
function that is independent of the miRNAs’ conventional role in post-transcriptional gene regulation. 
Here, we introduce a machine learning approach, BrainDead, to identify oligonucleotides that act as 
ligands for single-stranded RNA-detecting Toll-like receptors (TLR)7/8, thereby triggering an immune 
response. BrainDead was trained on activation data obtained from in vitro experiments on murine 
microglia, incorporating sequence and intra-molecular structure, as well as inter-molecular homo- 
dimerization potential of candidate RNAs. The method was applied to analyse all known human 
miRNAs regarding their potential to induce TLR7/8 signalling and microglia activation. We validated 
the predicted functional activity of subsets of high- and low-scoring miRNAs experimentally, of which 
a selection has been linked to Alzheimer’s disease. High agreement between predictions and experi
ments confirms the robustness and power of BrainDead. The results provide new insight into the 
mechanisms of how miRNAs act as TLR ligands. Eventually, BrainDead implements a generic machine 
learning methodology for learning and predicting the functions of short RNAs in any context.
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Introduction

MicroRNAs (miRNAs) are very short non-coding RNAs (~22 
nt) that predominantly bind to the 3´ untranslated regions of 
mRNAs to regulate their expression post-transcriptionally. To 
date, more than 2,000 miRNAs have been discovered in 
humans, and it is believed that they collectively regulate about 
one-third of the genes in the human genome [1]. miRNAs play 
important roles in development and physiology, and have been 
linked to various human diseases. These days these small RNAs 
are increasingly being pursued as both clinical diagnostics and 
therapeutic targets relevant in many medical fields, ranging 
from cancer to neurodegenerative disease. In particular, 
miRNAs are considered as potential biomarkers for diseases 
and treatment responses [2,3]. Under certain conditions such 
as cellular stress and malignancy, miRNAs are released from 
cells, thereby potentially acting as extracellular signalling mole
cules enabling intercellular communication [4,5]. In line with 
this, it has been recently discovered that some extracellular 
miRNAs directly activate membrane receptors such as Toll- 
like receptors (TLRs) [4,6,7], thereby expanding the function of 
miRNAs beyond their conventional role in gene regulation.

TLRs are pattern recognition receptors detecting both 
pathogen-associated molecules and damage-associated factors, 
such as those derived from dying cells and tumour tissue. 
Upon activation, TLRs signal through a complex array of 
effector proteins, resulting in an inflammatory response 
[8,9]. Among the different TLR family members, TLR7 and 
TLR8 (TLR7/8) primarily recognize single-stranded RNA 
(ssRNA) 40 derived from human immunodeficiency virus-1 
(HIV-1). The RNA’s GU-rich motifs are essential for species- 
specific TLR7/8 recognition [10–12], and a specific activating 
consensus sequence composed of GUUGUGU repeats (G, 
guanosine; U, uridine) was linked to the degree of receptor 
activation [13]. Forsbach et al. systematically narrowed down 
GU-rich and AU-rich nt tri- and tetramers to be crucial for 
activation of human TLR7/8. Furthermore, diverse motifs 
exhibit specific receptor preferences, thereby triggering the 
release of cytokines, such as TNF-α and IFN-α [14]. TLR7 
was recently found to detect host-derived RNA, including 
miRNAs [4,6,15]. let-7 miRNA, when extracellularly present 
in the brain, activates TLR7 in microglia, the resident immune 
cells in the central nervous system (CNS). Consequently, 
microglia release inflammatory molecules and cause 
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neurodegeneration in the cerebral cortex [4,16]. Moreover, 
cerebrospinal fluid of patients with Alzheimer’s disease 
(AD), the most common neurodegenerative disease in 
humans, exhibits elevated levels of let-7 copies [3,4,17]. 
Overall, these findings suggest a mechanistic contribution of 
the interaction between miRNAs and TLR7 to neurodegen
erative processes.

Not only pre-miRNA, but also mature miRNAs can form 
stable secondary structures that potentially are not only 
important for their extracellular stability, but may also affect 
the presentation of specific sequence motifs to TLR7/8 [18]. 
To reduce time- and cost-intensive experiments on the 
mechanism of the interaction between miRNAs and TLRs in 
a given disease context effectively, reliable in silico prediction 
methods are needed for the identification of oligonucleotides 
serving as receptor ligands and activating an immune cell 
response. Previous studies on in silico classification of nt 
sequences have been mainly focussed on genomic DNA and 
RNA within the genomic context. Lee et al. introduced 
a method to predict putative enhancers in the mouse and 
human genomes based on DNA sequence [19]. kmer-SVM 
is a Support Vector Machine (SVM) that uses a string kernel 
operating on subsequences of length k the so-called k-mers 
[20]. Most of the follow-up algorithms focused on the identi
fication of DNA genomic elements, for instance, from large 
Chip-seq datasets (e.g. gkmSVM [21]) or using DNA-specific 
structure properties (e.g. PseKNC [22]). Zhang et al. proposed 
a solution for the identification of piwi-interacting RNAs 
using k-mer features from the genome sequence without 
considering structure [23], while iMcRNA uses sequence- 
and structure-based features to identify precursor miRNAs 
via a pseudo amino acid composition approach [24]. The 
vectorization server repRNA [25] generates k-mer and 
pseudo-structure features of RNAs based on reduced repre
sentation of their minimum-free-energy (MFE) structures to 
enable machine learning tasks. However, to the authors’ 
knowledge, no accessible solution for the classification of 
short RNAs potentially serving as receptor ligands exists so 
far. It is also often desired to integrate previous knowledge of 
the applied features to better interpret and link the prediction 
process with knowledge from the literature and other experi
mental sources that cannot easily be incorporated without an 
interpretable methodology.

The let-7 miRNAs’ UUGU motif represents the required 
minimum motif to induce cytokine release from microglia 
through TLR7 [16]. Whether the structural features of 
a given oligonucleotide, e.g. a miRNA, are beneficial for 
TLR7/8 activation/binding or potentially mask/inhibit the 
association to its binding sites remains unexplored to date. 
Still, the secondary structure should be considered as an 
essential feature for predicting an oligonucleotide’s potential 
to activate TLR7/8. As mature miRNA is very short, transient 
hairpin structures can be formed. Thus, bioinformatics solu
tions designed to classify highly structured RNA molecules 
[26] are not suitable to predict oligonucleotides as receptor 
ligands. Instead, a fine-tuned flexible definition of structured
ness accompanied by sequence information is required. In 
particular, as homo-dimerization likely occurs when 
miRNAs are released in larger quantities [18], base-pairing 

potential during homo-duplex formation should be taken into 
account by a model aiming to predict miRNAs as extracellular 
signalling molecules.

The main aim of this work was to identify miRNAs that 
act as TLR7/8 ligands in humans and mice. Since the experi
mental validation of a vast number of miRNA candidates 
able to activate TLR7/8 within a reasonable time frame is 
cumbersome and costly, we applied BrainDead, a novel 
machine learning (ML) approach for the identification of 
TLR7/8-activating miRNAs. The methodology assesses an 
RNA’s accessibility via its ensemble of most stable structures 
and combines this information with k-mer feature genera
tion for a user-defined set of motifs. BrainDead was trained 
on a smaller set of previously validated miRNAs that in their 
extracellular form activated microglia, and used on all 
known human miRNAs. The predicted functional activity 
of a subset of in total 20 high- and low-scoring miRNAs, 
which in part have been previously linked to AD, were tested 
for their capacity to activate murine TLR7, as well as human 
TLR7, and human TLR8 expressed in HEK TLR reporter 
cells. We found that oligonucleotide-induced activation of 
TLR7/8 operated sequence-specifically and preferred bind
ing of unpaired bases. The experimental validation results 
well support the in silico classification of BrainDead, high
lighting its power to drive and support experimental design 
and studies.

Materials and methods

BrainDead pipeline

BrainDead is a machine learning (ML) approach to classify 
short RNA sequences/oligonucleotides such as miRNAs based 
on sequence and secondary structural features. The workflow 
is depicted in (Figure.1). First, BrainDead analyzes the occur
rence of k-mers within different structural contexts. The 
respective feature sets of each RNA are subsequently used to 
train a machine learning model based on the available pre- 
classification. Four sets/types of features are supported by the 
BrainDead pipeline. Sequence features are defined as the pre
sence or absence of short subsequences or their count. These 
so-called k-mers, of which k defines the length of the subse
quence, are problem-specific. Their selection is discussed in 
a subsequent section. The collected data define the feature set 
‘k-mer in any context’.

The considered k-mers are assumed to be important for 
the RNAs’ function, which typically involves direct interaction 
with target molecules. Thus, the structural context of each 
k-mer is important, i.e. whether it occurs within an unstruc
tured/single-stranded region, or is involved in intra-molecular 
structure formation. To this end, the pipeline predicts all 
stable putative secondary structures via RNAsubopt [27]. 
A structure is considered stable if its predicted free energy is 
below a user-defined absolute threshold (default −3 kcal/mol). 
If a k-mer is not involved in base-pairing in any stable 
structure, it is considered ‘unpaired in intra-molecular con
text’. This defines a second set of features that encodes k-mers 
in unstructured regions.

RNA BIOLOGY 269



We integrated a novel approach to consider intermolecular 
interactions under the assumption that oligonucleotides are 
present in high concentrations, which can occur in cells or 
extracellularly. When large amounts of mature miRNAs are 
released, it is likely that intermolecular homo–duplex interac
tions are formed [18]. The homo-duplex features are 

computed by predicting suboptimal homo-duplex RNA– 
RNA interactions using IntaRNA [28], with a subsequent 
‘unpaired in homo-duplex’ feature generation analogue to the 
primary single-stranded features. The procedure is illustrated 
in (Figure 2), and an example of a mature miRNA sequence 
from the training dataset is provided in (Figure S2).

Figure 2. Illustration of context-sensitive k-mer counting for feature generation. One of the two occurrences of a fictive k-mer (blue bar) within an RNA (grey bar) is 
masked by intra-molecular structure formation while both locations are involved in homo-dimerization. See Supplementary Material for a miRNA example.

Figure 1. Depiction of BrainDead’s workflow of feature generation (centre), model trainingand candidate classification (bottom).
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Finally, both intra- and intermolecular structure informa
tion is combined into a fourth feature set encoding ‘k-mer 
unpaired in any context’. The feature sets (and the positions of 
each k-mer) are generated by the first module of the pipeline 
and provide the database for training and application of 
BrainDead’s ML models.

To train a model, a set of RNAs has to be provided that is 
accompanied by the reference labels or values for the biolo
gical function under study (e.g. whether the RNA can trigger 
some effect or not). In addition, the set of k-mers has to be 
given. One can provide the whole set of k-mers of specific 
lengths (e.g. all 3-mers or 4-mers). Alternatively, users can 
provide a set of kmers that are known to be important in the 
target problem either from previous studies or by following 
a feature-selection strategy (see Results). The latter approach 
can boost the classification performance through pruning the 
feature space. The motifs are used to generate the parameter 
space of the model and to integrate biological knowledge. 
Based on this, per default, a support vector machine (SVM) 
is trained, but other models such as logistic regression from 
the scikit package [29] can be selected. The SVM and its 
parameterization were chosen based on a comparative evalua
tion of four logistic and SVM models with and without 
hyperparameter optimization. Further details are discussed 
within the Supplementary Material.

Finally, the trained BrainDead model is used for an auto
mated classification of RNAs with unknown activity. For each 
such candidate RNA, the feature sets are generated and the 
ML model is applied for its classification (i.e. its putative 
functional impact). The source code is freely available at 
https://github.com/BackofenLab/BrainDead.

BrainDead web server

To simplify BrainDead’s application for experimentalists, 
a web server is freely available as part of the Freiburg RNA 
tools [30] at http://rna.informatik.uni-freiburg.de/BrainDead/.

As input for training the ML model, the server only needs 
a set of sequences in FASTA format and a list of k-mers. Each 
sequence header from the training set must have a label from 
a binary pre-classification (+-1). This data is used to auto
matically train an ML prediction model. The generated fea
ture tables, as well as training statistics are available for 
download and inspection. This model is applied on a user- 
provided set of candidate sequences with unknown classifica
tion to predict their outcome. Their classification is visualized 
in the result page.

The web server is supplemented with the data obtained 
from our analysis of immune cell activation, which is dis
cussed in the following.

Microglial activation training data

Immune response data were obtained from the exposure of 
primary microglia derived from C57BL/6 mice to synthetic 
oligoribonucleotides. As activated microglia release inflam
matory molecules, also in response to oligoribonucleotides 
that induce TLR7 signalling [4,15], we determined TNF-α 
amounts in the microglial supernatant after 

oligoribonucleotide treatment via ELISA, thereby assessing 
the degree of microglia activation. We included 50 oligor
ibonucleotide sequences with a large fraction of mature 
miRNA origin, of which we analysed concentrations of 
TNF-α released from microglia after 24 h exposure to the 
individual oligoribonucleotide. Setting a cut-off of Fold 
Change >12 compared to unstimulated control conditions 
relying on at least two biological repetitions, we defined 22 
of the tested oligoribonucleotides as microglia-activating 
and the remaining 28 as non-activating miRNAs as refer
ence classification for training BrainDead’s ML models 
(Table S1). These activation data are based on previous in- 
house experiments [4,15,31] and (Wallach et al., 
unpublished).

K-mers for microglial activation training data

We generated an exhaustive feature set covering all possible 
k-mers of lengths 1–4 for the analysed miRNAs of the murine 
microglia training set, since it is unknown what sequence 
k-mers and which structural features are important for classi
fying microglia activation. The range of lengths was chosen 
based on previous findings concerning sequence motives acti
vating TLR7/8, considering both structural [32] and sequen
tial aspects [14], to limit the search range, and to avoid long 
k-mers that might be too specific and not represent a general 
pattern. Given the reference classification of the training data, 
the resulting feature set was subsequently analysed to identify 
k-mer subsets associated with the biologically validated refer
ence classification of the training set. We scored the features 
based on their importance for a robust classification. To this 
end, we applied the ReliefF algorithm [33] as implemented in 
the ReBATE package [34] and extracted the top-ranked fea
tures according to ReliefF scores as detailed in the 
Supplementary Material.

miRNA candidate selection for verification

We applied the BrainDead pipeline on all known human 
miRNAs to evaluate BrainDead predictions for the case of 
microglial activation as experimentally assessed and described 
above. To this end, BrainDead predictions for 2,656 human 
miRNAs from mirBase v22.1 [35] were ranked by BrainDead’s 
prediction score. The highest- and lowest-scored five miRNAs 
from that list were selected as candidate list 1 for verification. 
Noteworthy, the sequences from the candidate list do not 
overlap with the training data. We furthermore extracted the 
five highest-/lowest-scored candidates from the subset of 
human miRNAs that are linked to AD, serving as an example 
for a common disease affecting the human brain, as 
the second set of candidates. This selection was in particular 
motivated by our previous findings on let-7b-5p, which is (i) 
able to extracellularly induce mTLR7 signalling, thereby trig
gering inflammation and neurodegeneration in the CNS and 
(ii) specifically elevated in cerebrospinal fluid of AD patients 
[4,17]. Therefore, the overall list was pruned to miRNAs with 
the tag ‘Alzheimer’s’ and ‘increased expression’ in the disease 
annotation database PhenomiR v2.0 that includes expression 
profiles of the stored disease-associated miRNAs [36]. Table 
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S4 provides details for both candidate lists that cover in total 
20 miRNAs.

Validation experiments

Oligoribonucleotides
To validate the predicted miRNAs’ activation of immune cells 
and to test their potential to induce mTLR7 and/or hTLR7/8 
signalling, we used miRNA mimics. Oligoribonucleotides 
were modified with 5´ phosphorylation and phosphorothioate 
bonds in every base (Integrated DNA Technologies, 
Coralville, IA, USA). Sequence information for experimentally 
tested miRNAs is provided in (Table S4). A non-activating 
oligoribonucleotide containing a mutated let-7b sequence, 
referred to as control in (Table S1), served as negative control 
for sequence-specific microglial activation and HEK TLR7/8 
reporter cell induction [4].

Mice and cell lines
C57BL/6 mice were bred at the FEM, Charité – 
Universitätsmedizin Berlin, Germany. All animals were main
tained according to the guidelines of the committee for animal 
care. All animal procedures were approved by the Landesamt 
für Gesundheit und Soziales (LAGeSo) Berlin, Germany. HEK- 
BlueTM cells expressing mouse TLR7, human TLR7, or human 
TLR8, as well as the respective control cell lines HEK-BlueTM 

Null2-k, Null1-k and Null-1 (Invivogen, San Diego, CA, USA) 
were cultured in Dulbecco’s modified Eagle’s medium 
(DMEM; Invitrogen #41,965,062, Carlsbad, CA, USA). The 
DMEM was supplemented with 10% heat-inactivated foetal 
calf serum (FCS, Gibco #10,082-147, Thermo Fisher Scientific, 
Waltham, MA, USA) and penicillin (100 U/ml)/streptomycin 
(100 μg/ml; Gibco #15,140-122, Thermo Fisher Scientific, 
Waltham, MA, USA). Cells were cultured at 37°C in humidi
fied air with 5% (v/v) CO2.

Primary cultures of microglia
Primary cell cultures of microglia were generated as pre
viously described [37]. Briefly, microglia were isolated from 
mouse brains on postnatal day 1–4. Meninges, superficial 
blood vessels and cerebellum were removed from the cortices. 
The cortices were then homogenized with 3 ml Trypsin (2.5%; 
Gibco #15,090-046, Thermo Fisher Scientific, Waltham, MA, 
USA) for 25 min at 37°C. The trypsin reaction was stopped 
with FCS (Gibco #10,082-147, Thermo Fisher Scientific, 
Waltham, MA, USA). 100 µl DNase (Roche #ROD 
1,284,932, Basel, Switzerland) were added. The cell suspension 
was centrifuged at 1200 rpm at 4° C for 5 min. Pellets were 
resuspended in DMEM (Invitrogen #41,965,062, Carlsbad, 
CA, USA) supplemented with 10% FCS (Gibco #10,082-147, 
Thermo Fisher Scientific, Waltham, MA, USA) and 1% peni
cillin/streptomycin (Gibco #15,140-122, Thermo Fisher 
Scientific, Waltham, MA, USA), mechanically disassociated 
and passed through a 70-µm-cell strainer. Microglia were 
grown in T75 flasks for 10–14 d in 12 ml of DMEM 
(Invitrogen #41,965,062, Carlsbad, CA, USA) at 37°C in 
humidified air with 5% (v/v) CO2. The cells were seeded in 
96-well plates. On the following day cells were transfected 
with the synthetic oligonucleotides (10 µg/ml) or control 

oligonucleotide (10 µg/ml) complexed to the transfection 
agent LyoVec (InvivoGen #LYEC-RNA, San Diego, CA, 
USA) according to the manufacturer’s instructions.

HEK-Blue TLR activation assays
Human Embryonic Kidney 293 Blue (HEK-Blue) SEAP repor
ter cells overexpressing murine TLR7, human TLR7, or 
human TLR8 were used in activation assays. The parental 
control cell lines HEK-Blue Null2-k, Null1-k and Null1 were 
used as control. All cell lines were purchased from InvivoGen 
(San Diego, CA, USA). Cells were seeded into 96-well plates 
(5 × 104/well). After 24 h, cells were transfected with the 
synthetic oligonucleotides (5 µg/ml) or control oligonucleo
tide complexed to the transfection agent LyoVec (InvivoGen 
#LYEC-RNA, San Diego, CA, USA) according to the manu
facturer’s instructions. Cells were stimulated with indicated 
agents dissolved in HEK-Blue detection reagent (InvivoGen 
#hb-det2, San Diego, CA, USA). Each condition was per
formed in duplicate. The reporter protein SEAP was detected 
using the Varioskan Flash device (Thermo Fisher Scientific, 
Waltham, MA, USA) at a wavelength of OD 655 nm.

Results

Sequence-structure features associated with microglial 
activation

Using feature selection techniques, we identified a specific set 
of k-mers that are important for the classification of micro
glial activation, which was considered to represent an immune 
cell response. The identified k-mers were AA, AGA, AGGU, 
AGU, AGUU, CU, GAA, GAGG, GG, GGG, GU, GUU, 
UGA, UGU, UU, UUG, UUGU and UUU. For most top- 
ranked k-mers, occurrence in a structure-free context, i.e. 
unpaired/accessible within the folded structure, was impor
tant (see Figure S3(a)), indicating the impact of structure on 
activation. However, homo-dimerization (inter-molecular 
pairing of the same miRNA species) was found to be less 
important. k-mers that correlate with microglial activation 
aligned around central motifs (G)UU(G) and AGU, while 
k-mers that correlate with non-activation aligned around 
(U)GG(A) and AGAA. Further details on the k-mer selection 
and their properties are provided in the Supplementary 
Material.

Training of the BrainDead model on microglial activation

We trained an ML classifier to learn a model of microglial 
activation and to predict oligonucleotides as TLR7/8 ligands 
given their extracellular mode of function and sequence. The 
model uses the k-mers identified in the previous step in each 
structural context (any single-stranded, unpaired in homo- 
dimer, unpaired in both structure and dimer). As applied 
for the training model, we evaluated several ML classifiers 
with a stratified 3-fold strategy on the training data to identify 
the suitable algorithm. Among the scikit models, support 
vector machines (SVM) and logistic regression (logit) kernels 
had the best classification score measured by F-score as the 
harmonic mean of precision and recall (see Supplementary 
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Material Section 3). Both SVM and logit achieved high 
F-scores. However, since it was crucial for our experimental 
validation studies to have a low false-positive rate, the model 
with the highest precision, i.e. SVM-rbf, was selected as the 
final model for the prediction of microglial activation.

BrainDead predictions and candidate selection

(Figure 3) summarizes the distribution of predicted scores 
with respective activation potential classification of all 
human miRNAs identified so far. The major portion of 
human miRNAs has exhibited a low BrainDead score (<0.3). 
This was expected, since only a limited subset of human 
miRNAs are anticipated to function as microglia-activating 
receptor ligands. The learned model has set a score of 0.54 as 
the ligand classification threshold. While scores higher than 
the threshold are predicted to be activating, we would expect 
candidates scored in the boundary region as unlikely to acti
vate despite being predicted to be positive. The bottom plot in 
(Figure 3) shows the score distribution of the 93 miRNAs that 
are listed with the tags ‘increased expression’, and ‘Alzheimer’ 
in the PhenomiR database. Their scores are distributed over 
the whole BrainDead scoring range.

The ‘high-5’ miRNAs with highest activation score among 
all human miRNAs were: hsa-miR-6888-3p, hsa-miR-374b- 
3p, hsa-miR-130b-5p, hsa-miR-4288, hsa-miR-5701; the 
‘low-5’ were: hsa-miR-4727-3p, hsa-miR-3198, hsa-miR-361- 
5p, hsa-miR-422a, and hsa-miR-541-3p (list 1, Table S4). The 
‘high-5’-scored human miRNAs associated with AD were: 
hsa-miR-30a-3p, hsa-miR-9-5p, hsa-miR-30e-3p, hsa-miR 
-375-3p, hsa-miR-381-5p; the ‘low-5’ were: hsa-miR-191-5p, 
hsa-miR-216a-3p, hsa-miR-501-3p, hsa-miR-204-3p, and hsa- 
miR-422a (list 2, Table S4). Noteworthy, both high- as well as 
low-scored miRNAs from list 2 are AD-associated. Both lists 
were used for the downstream experimental verification. 
Further details are provided in the Supplementary Material.

Experimental candidate verification

For validation, we tested all miRNA candidates from list 1 and 
list 2 (in total 20 miRNAs) using primary mouse microglia, 
i.e. the same cellular system that the microglial activation 
training data is based on. To do so, microglia isolated from 
C57BL/6 (wild-type, WT) mice were exposed to miRNA 
mimics for 24 h. Subsequently, supernatants were collected, 
and TNF-α concentration was measured via ELISA (Figure 4, 
Table S5). Four out of the five top-scored candidates pre
dicted by the BrainDead pipeline from list 1 significantly 
induced TNF-α release from microglia (Figure 4(a), blue 
bars), whereas all low-5 candidates did not induce significant 
TNF-α release (Figure 4(a), orange bars). In addition, all 
tested high-5 AD-associated miRNAs from list 2, but none 
of the corresponding low-5 candidates significantly induced 
TNF-α release from microglia (Figure 4(b)). In both experi
mental approaches testing miRNA candidates of list 1 and list 
2, the non-activating mutant control (ctrl) oligonucleotide did 
not induce TNF-α production in microglia.

To further validate the oligonucleotide-induced effects 
observed in microglia and to analyse the miRNA candidates’ 
capacity to activate mTLR7, we made use of HEK-Blue repor
ter cells overexpressing mTLR7. In these cells, the Secreted 
Embryonic Alkaline Phosphatase (SEAP) reporter gene was 
inserted directly after the NF-B/AP-1-promoter, a well- 
established output of TLR7/8 signalling [8]. SEAP activity 
was determined via colorimetric change of the SEAP- 
substrate reporter media. Four out of high-5 miRNAs of list 
1, miR-6888-3p, miR-130b-5p, miR-4288, and miR-5701, sig
nificantly activated mTLR7 (Figure S6(a)). Exposure of 
mTLR7 HEK reporter cells to the high-5 list 1 candidate 
miR-374b-3p led to NF-kB induction compared to control, 
although not reaching statistical significance (Figure S6(a)). 
Exposure of mTLR7 HEK reporter cells to the low-5 candi
dates of list 1 did not induce any response (Figure S6(a)). The 
high-5 AD-associated miRNAs of list 2, miR-30e-3p, miR- 
375-3p, and miR-381-5p significantly induced mTLR7 repor
ter activation (Figure S6(b)). The high-5 AD-associated can
didates miR-9-5p and miR-30a-3p induced NF-kB responses 
compared to control, although not reaching significance. Out 
of the low-5 AD-associated candidates of list 2, only miR- 
216a-3p significantly induced mTLR7 activation, while all 
other tested miRNAs of the low-5 AD-associated candidate 
list 2, miR-422a, miR-204-3p, miR-501-3p, and miR-191-5p 
did not induce receptor activation (Figure S6(b)). Results on 
activation of mTLR7 expressed in HEK TLR reporter cells (see 
Figure S6, Figure 5) were in line with the experiments on 
microglial activation described above (see Figure 4, Figure 5). 
For instance, miR-4288 (classified as activating miRNA) con
sistently induced strong responses in both cell systems com
pared to control conditions, while only a weak response in 
terms of microglial activation and mTLR7 induction was 
assessed in the case of miR-374b-3p (also classified as activat
ing miRNA). A consistent trend is observed in (Figure S7), 
which shows in total 38 miRNAs that were experimentally 
tested for receptor activation within our study. This includes 
both the 20 candidates classified by BrainDead (see above) as 
well as 18 additional miRNAs from the ML training data set 

Figure 3. Distribution of BrainDead scores and predicted activation potential 
(orange and blue) for all 2,656 human miRNAs annotated in mirBase. The 
bottom histogram (light blue) provides the distribution of 93 BrainDead scores 
of Alzheimer’s disease (AD)-associated miRNAs according to the PhenomiR 
database.
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that were also analysed in the HEK mTLR7 reporter cell 
system. Similar and consistent results obtained from the 
experiments analysing activation of mouse microglia and 
HEK TLR reporter cells overexpressing mTLR7 indicate that 
mouse microglial activation is likely mediated through 
mTLR7 signalling.

To transfer the results obtained from the ML approach 
described above to the human system, we analysed the 
miRNA candidates of list 1 and list 2 with respect to their 
potential to activate human TLR7 and/or human TLR8 using 
HEK reporter cells overexpressing hTLR7 or hTLR8. As TLRs 
are highly conserved among species, we expected the model 

trained on mouse microglia data as being able to predict 
miRNAs that activate human TLRs. Indeed, testing for 
hTLR7 activation we observed a similar response pattern 
(Figure S8) as observed for mTLR7 activation (see Figure 
S6) described above. From list 1, hTLR7 was significantly 
activated by the high-5 ranked miR-6888-3p, miR-4288, and 
miR-5701, while miR-374b-3p and miR-130b-5p incubation 
resulted in receptor activation by trend compared to control. 
In contrast, none of the tested low-5 miRNA candidates 
induced hTLR7 activation (Figure S8(a)). Among the high- 
5 AD-related miRNAs (list 2), miR-9-5p induced significant 
hTLR7 activation, while exposure to miR-30a-3p, miR-30e-3p, 

Figure 4. Experimentally assessed TNF-α release from microglia. (a) list 1 – miRNA candidates that were selected based on BrainDead score only and (b) list 2 – AD- 
associated miRNAs. miRNAs are arranged by ascending BrainDead prediction score. Blue and orange colouring refers to BrainDead prediction, i.e. activating (high-5) 
and non-activating (low-5), respectively. Control conditions are indicated by grey colour. Microglia were exposed to 10 µg/ml of the indicated miRNA mimic for 24 h. 
The established TLR7 agonist loxoribine (1 mM) and the TLR4 agonist lipopolysaccharide (LPS, 100 ng/ml) served as positive control for microglial activation. Control 
mutant oligonucleotide (10 µg/ml), unstimulated cells, and the transfection agent LyoVec were used as negative control. Bars represent mean values ± SEM (n = 4) of 
depicted measurements (dots). **P < 0.01; ****P < 0.0001 compared to unstimulated condition, two-tailed Student’s t-test.

Figure 5. Relation of activity measurements from mouse microglia and mTLR7 reporter cells. Each point represents a miRNA from the respective candidate list, i.e. list 
1 includes candidates that were selected based on BrainDead score only (circles), while list 2 includes AD-associated miRNAs classified by BrainDead (squares). TNF-α 
concentrations (mouse microglia, y-axis) and SEAP activity expressed as fold change (mTLR7 reporter activation, x-axis) averaged from four replicates are shown. The 
annotated numbers indicate the ranking predicted by BrainDead for the high-5 activating miRNAs of the two lists. See Figure S7 for an extended version of the plot.
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miR-375-3p and miR-381-5p led to NF-kB activation com
pared to control, although not reaching statistical significance 
(Figure S8(b)). miR-501-3p of list 2, categorized as low-5 
candidate, significantly induced hTLR7, while miR-191-5p, 
miR-216a-3p, miR-204-3p, and miR-422a from this test 
group did not induce any response (Figure S8(b)).

Testing for hTLR8 activation revealed that four out of the 
five high-5 list 1 candidates, namely miR-6888-3p, miR-374b- 
3p, miR-130b-5p, and miR-5701, significantly induced 
hTLR8 reporter activation, while miR-4288, classified as acti
vating candidate, and all tested miRNAs of the low-5 list 1 
candidate group, miR-4727-3p, miR-3198, miR-361-5p, miR- 
422a and miR-541-3p did not induce such a response (Figure 
S9(a)). From list 2, the AD-related candidates according to 
the PhenomiR database [36], miR-30a-3p, miR-9-5p, miR- 
30e-3p, and miR-381-5p ranked as the high-5 candidate 
group, significantly induced hTLR8 activation, while only 
one of the high-5 candidates, namely miR-375-3p, did not 
induce such a response (Figure S9(b)). Out of the low-5 
candidate group from list 2, miR-216a-3p significantly 
induced hTLR8 activation, while miR-191-5p, miR-501-3p, 
miR-204-3p, and miR-422a did not induce receptor activa
tion (Figure S9(b)).

Discussion

BrainDead – generic and customizable RNA classification

BrainDead is a generic and customizable RNA classification 
pipeline that can be tailored to predict activity of any biolo
gical problem with a binary classification nature. This 
machine learning approach considers both sequence k-mers 
and their structural context, and requires a reference pre- 
classified dataset for training. Since tailored to short RNAs, 
it can take all (semi)-stable structures into account and is not 
restricted to a single putative structure per RNA, e.g. only the 
minimum-free-energy structure as considered by repRNA 
[25]. That way, stable structure alternatives are considered 
that are otherwise ignored. Furthermore, BrainDead has 
a simple but powerful definition of ‘stability’ via 
a customizable absolute energy threshold. This allows, in 
contrast to alternatives based on an unpaired probability 
[38], a fine-tuned classification of stability adjusted for the 
studied RNA. The indirect incorporation of structure via 
k-mer context allows to integrate a low evolutionary structure 
conservation and to investigate context – rather than localiza
tion-based structural similarities without requiring an overall 
or local similarity. This distinguishes BrainDead from the 
available solutions for structure-based classification and clus
tering that are designed to identify similar folds and homol
ogy analysis [26,39].

The customizable sequence feature generation based on 
a user-provided list of k-mers enables a fast and problem- 
specific feature generation. Thus, besides its application as an 
all-in-one classifier, BrainDead can be used as a feature gen
erator, similar to the functionality of repRNA, which only 
provides exhaustive feature generation. BrainDead’s feature 
tables can be employed in any other pipeline if the 

BrainDead model has to be extended. The latter is also pos
sible by direct modification of its open Python source code.

BrainDead web server

To simplify applications and enable reproducibility, a web 
server interface of BrainDead is available. Given a pre- 
classified set of RNAs (FASTA format with binary class label 
in each header) and a problem-specific set of k-mers, the web 
server will generate the respective feature tables and train 
a classification model. Features, as well as the model and 
training statistics are available for download and inspection. 
For a provided set of candidate RNAs (FASTA format), clas
sification results are visualized on the result page and available 
for download (CSV format). Thus, the BrainDead web server 
provides a simple yet powerful platform to develop and use 
a problem-specific RNA prediction model, thereby supporting 
the design of experimental studies.

BrainDead microglial activation model

Sequence motifs identified and used to train BrainDead for 
receptor-mediated microglial activation, i.e. activation of an 
immune response by extracellular host-derived RNA, fall into 
two classes based on their occurrence in the training data, i.e. 
whether they are mainly found in (i) activating or (ii) non- 
activating RNAs (see Figure S3). The latter class distinguishes 
the BrainDead model from classic approaches that focus on 
activation only [14]. Based on such studies, it is known that 
GG- and/or GU-rich motifs are important for TLR activation. 
This knowledge was independently revealed by our (unin
formed) feature extraction performed to select important 
motifs (Table S2), thereby demonstrating the power of auto
mated systems. Most activation-related k-mers are UG-/GU- 
rich and some, like UUGU, were also top-ranked in the study 
by Forsbach et al. [14].

Three-dimensional structural analysis of TLR7 revealed 
that this receptor harbours two different ligand-binding 
sites, which can act synergistically on receptor dimerization 
and consequent immune cell activation (Z. Zhang et al. 2016). 
The first binding site exhibits a preference for G over U, while 
the second binding interface co-crystallizes with G- and 
U-rich ssRNA fragments. The second site requires a trimer 
of bases with one U present in the central position. These 
receptor features regarding structure and sequence are well- 
matched by the k-mers identified in our current study. 
Forsbach and colleagues used a battery of 4-mer sequence 
motifs to generate TLR7/8 activation data based on TNF-α 
and IFN-α release from peripheral immune cells [14]. 
However, this study did not consider sequence information 
and thus the impact of a whole mature miRNA. Since differ
ent binding sites with different RNA base preferences are 
located within TLR7 (see above [32]) it is likely that bases 
within one miRNA bind to both receptor sites to achieve 
activation. Thus, miRNAs may be considered as TLR- 
activating chimeras. Consequently, we used the activation 
data generated from short single-stranded oligonucleotides 
of 21–26 nt length (Table S1), including a large fraction of 
mature miRNA sequences for our training paradigm. The 
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U and GU content of miRNAs was previously described to 
correlate with the degree of TLR7/8 activation [40,41]. 
However, specific sequence and structural features that enable 
a miRNA to act as a functional ligand for TLR7/8 remained 
unexplored so far. In our current study, we not only raised the 
question of which sequential features of a given miRNA are 
required to activate/bind to TLR7/8 but also whether these 
motifs are (not) masked (i.e. free accessible) for TLR7/8 bind
ing by intramolecular and homo-dimerization structure for
mation. Our results indicate that activating k-mers are likely 
structure-free (unpaired/accessible), whereas homo- 
dimerization was not important for TLR7/8 activation.

Experimental candidate verification

The finding that four out of five high-scored miRNA candi
dates (list 1) defined by BrainDead significantly activated 
primary mouse microglia was reproduced in experiments 
using HEK reporter cells overexpressing mTLR7. However, 
out of the high-5 AD-linked candidates (list 2), which all 
induced microglial activation, only three (miR-30e-3p, miR- 
375-3p and miR-381-5p) induced statistically significant 
mTLR7 activation, and out of the five candidates from the 
low-5 group, which did not induce a significant response in 
microglia, miR-216-3p significantly activated mTLR7 in the 
HEK TLR reporter cells. These different findings regarding 
the statistical significance obtained from the experiments test
ing microglial activation and mTLR7 reporter induction is 
likely due to a higher variation of the measured values derived 
from the mTLR7 reporter induction analysis. Still, in general, 
the activation of mTLR7 by low-scored miRNAs expressed as 
Fold change was much lower compared to the activation 
induced by the high-scored miRNA candidates. The valida
tion experiments testing for human TLR7 and human TLR8 
activation also supported the consistent prediction results of 
BrainDead. In addition to minor exceptions, only high-ranked 
candidate miRNAs activated the respective tested TLR. These 
findings point to the presence of specific miRNAs’ sequence 
motifs relevant for the interaction with both receptors, TLR7 
and TLR8, in mouse and human. Thus, a model trained on 
data obtained from experiments on mouse immune cells such 
as BrainDead seems to be capable of supporting research on 
RNA acting as ligands of human TLRs, especially in a human 
disease context. Furthermore, the consistent scoring of AD- 
related list 2 candidates and the uniform distribution of AD 
association within the BrainDead scoring scheme (see 
Figure 3) suggests that candidate selection purely based 
on AD database annotation would provide a much lower 
rate of activating candidates compared to BrainDead-based 
filtering.

Conclusion

We present here a novel, customizable, and generic machine 
learning approach for the functional classification of small 
oligonucleotides. The method was applied for the prediction 
of human miRNAs serving as TLR7/8 ligands and activating 
immune cells. While our training dataset was based on mouse 
microglial activation, the results obtained from validation 

experiments on mTLR7 and hTLR7/8 activation demon
strated the ligand character of the tested candidate miRNAs. 
The experimentally assessed potential of 20 tested miRNAs 
regarding TLR7/8 activation was congruent with the classifi
cation predicted by our in silico machine learning pipeline. 
The BrainDead model takes the structural context of k-mers 
concerning unpairedness/accessibility in intramolecular, as 
well as homo-dimer structure formation into account. 
Future work will broaden the supported context types to e.g. 
motifs occurring in RNA helices, specific substructures like 
hairpin loops, or tertiary motifs. We plan to incorporate more 
generic k-mer motif definitions via sequence logos or regular 
expressions, and the integration of measured affinity informa
tion of specific k-mers into the model. Overall, our study 
shows that BrainDead is well suited to support experimental 
study design based on its comprehensible model definition, 
simple user interface, and predictive power. While miRNAs 
play important roles in human health and diseases, TLR7 and 
TLR8 are key regulators of immune responses, are involved in 
organ-specific processes, such as neurodegeneration in the 
CNS, and also play complex roles in human diseases, e.g. 
rare TLR7 variants can implicate COVID-19 severity [42]. 
The power of the presented and online-provided model 
trained on immune cell activation can be used for any short 
RNA molecule to be tested for ligand-mediated TLR activa
tion, considering any cell type capable of functional TLR7/8 
signalling.
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