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Abstract

Src homology 2 (SH2) domains are the largest family of the peptide-recognition modules (PRMs) that bind to
phosphotyrosine containing peptides. Knowledge about binding partners of SH2-domains is key for a deeper
understanding of different cellular processes. Given the high binding specificity of SH2, in-silico ligand peptide prediction
is of great interest. Currently however, only a few approaches have been published for the prediction of SH2-peptide
interactions. Their main shortcomings range from limited coverage, to restrictive modeling assumptions (they are mainly
based on position specific scoring matrices and do not take into consideration complex amino acids inter-dependencies)
and high computational complexity. We propose a simple yet effective machine learning approach for a large set of known
human SH2 domains. We used comprehensive data from micro-array and peptide-array experiments on 51 human SH2
domains. In order to deal with the high data imbalance problem and the high signal-to-noise ration, we casted the problem
in a semi-supervised setting. We report competitive predictive performance w.r.t. state-of-the-art. Specifically we obtain 0.83
AUC ROC and 0.93 AUC PR in comparison to 0.71 AUC ROC and 0.87 AUC PR previously achieved by the position specific
scoring matrices (PSSMs) based SMALI approach. Our work provides three main contributions. First, we showed that better
models can be obtained when the information on the non-interacting peptides (negative examples) is also used. Second,
we improve performance when considering high order correlations between the ligand positions employing regularization
techniques to effectively avoid overfitting issues. Third, we developed an approach to tackle the data imbalance problem
using a semi-supervised strategy. Finally, we performed a genome-wide prediction of human SH2-peptide binding,
uncovering several findings of biological relevance. We make our models and genome-wide predictions, for all the 51 SH2-
domains, freely available to the scientific community under the following URLs: http://www.bioinf.uni-freiburg.de/Software/
SH2PepInt/SH2PepInt.tar.gz and http://www.bioinf.uni-freiburg.de/Software/SH2PepInt/Genome-wide-predictions.tar.gz,
respectively.
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Introduction

Protein-protein interaction is a major area of biological science

to understand transduction of cellular signals. One important

function of protein-protein interactions is to mediate post

translational modifications by binding of a protein domain with

a short linear peptide [1]. Receptor tyrosine kinases (RTKs) are

the largest kinase family that phosphorylate specific tyrosine

residues in a protein and play a vital role in signal transduction by

regulating a variety of essential cellular processes such as

proliferation, differentiation, growth, migration, apoptosis and

malignant transformation in metazoans [2–5]. There are two types

of protein domains that recognize the phosphotyrosine (pTyr)

residue in a linear peptide, namely src homology 2 (SH2) and

protein tyrosine binding (PTB) domains [6,7]. SH2 domains are

structurally conserved protein domains containing a central b
sheet flanked by 2 a helices, normally found in intracellular signal

transducing proteins [8,9]. Previous study indicated that there are

around 120 SH2 domains in 110 unique human proteins and each

SH2 domain binds with distinct phosphopeptides [10]. There are

some evidences that mutations in some SH2 domains can cause

several human diseases like XLP syndrome [11], Noonan

syndrome [12], X-linked a-gammaglobulinemia [13] and basal

cell carcinoma [14]. Researches using peptide libraries have shown

that each SH2 domain binds with a specific subset of

phosphopeptides [15–18]. Computational identification of SH2-

domain specific binding to arbitrary phosphopeptides within a

complex cellular system is an open challenge with high relevance.

Due to the high number of SH2-domains, one has to resort to

high-throughput data for defining the binding specificity. Over the

years several experimental approaches and associated computa-

tional prediction methods have been developed to identify in-vitro

binding specificity of human SH2 domains.
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One of the most popular tools is Scansite, which was developed

by Yaffe et. al. in 2003 [19] and is based on position specific scoring

matrices (PSSMs) derived from chemically synthesized peptide

array libraries [19,20]. More recently, a similar approach called

SMALI has been published by Li et al. in 2008 [21], which is also

based on PSSMs derived from a slightly different library approach

called OPAL (oriented peptide array libraries) [22,23]. In another

recent work (DomPep), the authors propose a linear SVM based

method to predict domain-peptide interactions [24].

PSSM models, as used by Scansite and SMALI and SVM

models, as used by DomPep are essentially linear models that are

not capable of reflecting the complex dependencies between

amino acid positions. Furthermore, PSSM based tools induce

models based only on confirmed interactions (positive interactions)

but don’t exploit the information from negative interactions. In

order to incorporate more complex interactions and thus to

improve prediction accuracy, other approaches used structural

information of SH2-peptide complexes and energy models derived

thereof. Examples are comparative molecular field analysis

(CoMFA) [25], FoldX algorithm [26,27] and others [28–30].

Unfortunately these approaches are computationally very expen-

sive and depend on solved structures, which are given only for few

SH2-peptide complexes. One exception is Wunderlich et al., who

presented an energy model that can be used for almost all human

SH2 domains [31]. However the good performance reported

seems to be due to some over-training issues (see Results Section).

Previous research showed that the correlations between

different ligand positions take important role in the binding

specificity of the SH2 domains [32]. In recent years, polynomial

kernels have been successfully applied to the prediction of DNA-

protein interactions [33]. In this paper, we propose domain

specific non-linear models for SH2-peptide interactions that are

based on support vector machines. As the complexity of the model

increases so does the required number of training instances. While

modern high-throughput techniques seem to be the perfect

solution to the data requirements, they have other issues. The

first problem is that techniques like pool oriented peptide arrays

(such as [22,23]) do not test individual peptides but pools of

peptides with common properties. In a second phase, individual

peptides are tested with separate methods. Thus, while these

approaches provide information about real interactions (positive

data), they cannot reliably be used to assess the lack of a domain-

peptide interaction. A similar situation occurs with many high-

density peptides arrays where affinities are not reported. Other

high throughput approaches like microarrays do report affinities

(e.g. [34] and [35]) and thus can be used to assess the lack of strong

interaction. These approaches suffer, however, from a low signal

to noise ratio and therefore produce results that are often

inconsistent. For example, in one microarray experiment [34]

found that the number of interactions between 11 peptide

sequences extracted from protein ErbB1 and 85 SH2 domains is

37, while in similar settings in another microarray experiment [35]

found three times as many interactions.

This state of affairs leads to a great imbalance between the

available information on positive vs. negative interaction data.

Such an imbalance constitutes a severe problem when fitting a

predictive model. For example, for some SH2 domains, the

information on real interactions can be up to 15 times more

abundant than the information on the lack of interaction. It is

known that in these conditions predictive systems produce

suboptimal results.

We propose a semi-supervised iterative approach to tackle all

these issues. We devise a non-linear support vector machine

(SVM) model for each of 51 human SH2 domain. These models

can successfully exploit the information on the dependency

between position specific amino acids. To tackle the problem of

data imbalance, we developed a simple yet effective approach to

make the best use of various types of experimental interaction

measurements. To be more specific, we first extract an initial high

quality dataset from high density peptide arrays and micro array

experimental results. In a second step, the data is rebalanced using

a self-training strategy.

We show that our approach performs significantly better than

state-of-the art SH2-peptide interaction prediction tools. Further-

more, when applying it on high quality hand-curated SH2-peptide

interaction data from PhosphoELM database [36], we achieved

higher True Positive Rate (TPR) in comparison to PSSM models

(SMALI) and energy model. In addition we perform a genome-

wide analysis and find interesting insights of biological relevance.

Finally, we make our models and genome-wide predictions freely

available to the scientific community.

Results and Discussion

Model
Our approach takes in input peptide sequences that have been

previously aligned, and, as it is common in literature, it is based on

amino-acid positional features. The alignment phase induces a

global position system where the phosphotyrosine residue is given

position 0. Differently from most approaches though, we propose

to model complex non-linear dependencies between the amino-

acid positional features.

Previous studies showed that residues in the close vicinity of the

phosphotyrosine are highly predictive for SH2 domain-peptide

binding [19,21,31]. For example it is known that the SH2 domain

of CRK binds peptides where amino acid Leu or Pro is in position

+3, however the presence of other amino acids (i.e. His, Arg, Ala,

Pro) in position +1 and +2 can inhibit the interaction. [32]. Thus,

we followed the literature and restricted the peptide sequence to 6

specific positions, namely we extracted all the amino acids ranging

from 2 upstream to 4 downstream of the phosphotyrosine residue.

A peptide is therefore mapped into a binary vector x living in a

2066 = 120 dimensional space (as the central amino acid is always

a phosphotyrosine, it is not informative and it is not included in the

encoding), that is, for each position, we reserved 20 dimensions

(one for each amino acid) and encoded the amino acid type with a

1 in the corresponding dimension and 0 elsewhere.

For the predictive model, many popular approaches, such as

SMALI [21], are based on PSSMs. We note that these methods

are essentially linear models and cannot therefore model arbitrary

functional dependencies between amino acid positions.

Here we propose three ways to improve over PSSM models: 1)

upgrading the system from linear to non-linear, 2) making the

system more robust using regularization techniques, and 3) making

an effective use of both interaction information (positive examples)

and non-interaction information (negative examples) by dealing

with the imbalanced issues.

More in details, non linear models allow to express decision

rules that can take into consideration complex functional

dependencies between amino acid positions. For example it could

be important to differentiate between the situation where we have

the co-occurrence of two or more amino acids and the situation

where one has independent occurrences of the same amino-acids

in different peptides. For example consider a case where the

presence of amino acid Asn in position +2 alone is not sufficient to

guarantee the interaction and neither is the presence of amino acid

Lys in position 21. However if these amino acids are occurring in

their respective positions at the same time then the binding occurs.

Prediction of SH2-Peptide Interactions
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Note that there can be different instances of this situation, such as

two or more amino acids can have an non-additive effect as

described in the example, or two or more amino acids can exclude

each other etc. In order to model this non-linear dependencies (but

at the same time control the complexity of the model), we upgrade

to polynomial kernels(for details, see Methods, Subsection Regular-

ized Non-linear Support Vector Machine). Note that the degree of the

polynomial kernel is optimized via cross-validation and hence, a

simpler linear model can still be chosen for some SH2 domains

when it offers better performance.

The second improvement is to employ regularization techniques

to avoid overfitting. Albeit there are many different ways of

dealing with this problem, we adopt the strategy that has been

championed in support vector machines. The basic idea of

regularization is to minimize the complexity of the model by

adding a penalty to discount the cumulative size of the parameters.

To be more precise, the complexity of the model depends on the

degree of the polynomial kernel (since this determines the number

of parameters) and on the cumulative size of the parameter vector

in the SVM (for details, see again Methods, Subsection Regularized

Non-linear Support Vector Machine).

Using the polynomial kernel, we achieve a higher SH2-peptide

interaction modeling flexibility. As a consequence of this increased

flexibility, we need a larger number of training instances.

Notwithstanding the availability of dataset derived by high-

throughput techniques, we still suffer from lack of reliable negative

data (see Materials and Methods section). This is the main cause for

the high imbalance: for some SH2 domains, information on real

interactions can be up to 15 times more abundant than

information on the lack of interactions (see Table S1). It is known

that in these conditions predictive systems produce suboptimal

results (for further details see subsection Modeling and learning issues: a

short review on the imbalanced dataset problem in the Materials and Methods

Section). To mitigate these issues, we propose the pipeline depicted

in Figure 1. The main idea is to bootstrap from a smaller set of

reliable negative instances and only select peptides that we are

highly confident to yield negative interactions. Specifically, the

pipeline works as follows: 1) an initial high quality, experimentally

verified, dataset is extracted from high density peptide arrays and

micro array results; 2) data is rebalanced using a self-training

strategy with polynomial SVM; 3) model selection is performed to

select the best model complexity for each specific SH2 domain.

The key points here are the a) rebalancing strategy, and the b) self-

training phase. For rebalancing we use over-sampling in order not

to throw away valuable information as would be done with under-

sampling strategies. The self-training is a straightforward yet

effective wrapper technique that can be applied to any classifier. It

consists in an iterative procedure where at each stage the current

model predicts the class label over the unsupervised material. In

the next training phase the class labels for the most confident

predictions are used. The procedure can then be iterated. In our

case the confidence is scored as the distance from the discrimi-

native hyper plane.

Evaluation
In order to assess the expected predictive performance of our

approach, we have performed two types of experiments: (i) a cross-

validation and random splitting on combined data from three

sources: a peptide array library data (dataset I) and two microarray

datasets (dataset II and dataset III); moreover (ii) we performed a

validation experiment using a manually curated SH2-peptide

interaction dataset (dataset IV) (see Methods for details).

We compare the performance against two state-of-the-art

approaches: 1) a tool based on PSSMs and 2) an energy model

based on interaction maps. The first tool, called SMALI [21] is

available for 76 SH2 domains and is based on the same peptide

representation we use (i.e. 22 to +4 amino acids with pTyr in 0th

position). The second tool [31] is an energy model based on

different types of interaction maps where only the positions of

amino acids found to be in contact are used.

Predictive Performance Evaluation Setup. On each SH2

domain we evaluate the predictive performance of our approach

with a stratified 5 fold cross-validation. Here the data set is split

into 5 equal parts, which are all used in turn as test sets. The

remaining 4/5 of the data is used in turn as training material. The

hyper-parameters, i.e. the polynomial degree, the trade-off

between fitting and smoothing cost parameter C, are determined

on a ten-fold cross-validation. The whole cross-validation proce-

dure is then repeated 5 times. Using a repeated random split with

75% of the data for training and the remaining 25% for testing, we

obtain performance values which are comparable to those

obtained in the cross-validation setting (see Figure S1).

We compute the area under the ROC curve (AUC ROC) and

the area under the precision and recall curve (AUC PR) (see

Figure 2). Additionally, we report sensitivity, specificity with

standard deviation per domain for different treatments of negative

data in Table 1, where the first column refers to no imbalance

treatment, the second refers to a random re-balancing strategy and

the last refers to the proposed iterative self-training strategy.

To assess the importance of the correlation between the amino

acid positions we also compared the predictive performance of a

linear v.s. a non-linear (i.e. polynomial with degree 2) kernel. In

42/51 = 82.3% cases the polynomial kernel outperfomed the

linear kernel according to the AUC ROC measure, which

increases to 47/51 = 92.2% cases when we consider the AUC

PR measure (see Table S2).

Performance comparison. We compare our results with

two state-of-the-art tools: SMALI [21], and an energy model

approach [31]. We apply these tools as well as our approach to all

51 test sets (SMALI could be applied to 45 test sets as it doesn’t

have model for the other 6 SH2 domains). Our model achieves an

average AUC ROC of 0.83 and average AUC PR of 0.93 (see

Figure 2), outperforming the other two approaches: SMALI

achieves AUC ROC of 0.71 and AUC PR of 0.87; the energy

model achieves AUC ROC of 0.62 and AUC PR of 0.81. Detailed

information on the AUC ROC and AUC PR for each SH2

domain is available in Figure S2 and Figure S3, respectively.

We note that SMALI achieves a very high specificity (0.95 on

average) in all 45 SH2 domains when the proposed threshold is

used (i.e. relative SMALI score 1), however this comes at the

expenses of a very poor sensitivity (0.26 on average). See Table 2

for details.

In order to directly compare the sensitivities, we identified the

threshold for our model so to achieve the same specificity as

SMALI (and another threshold for the energy model). The

advantage of our approach is evident in this setting too, achieving

a sensitivity of 0.45 on average against 0.26 for SMALI and 0.17

for the energy model.

Comparison on validated data. Here we test our approach

with SMALI on a manually curated and reliable database of SH2-

peptide interactions called PhosphoELM [36]. We couldn’t test

energy model, since there is no specific threshold that can

determine the class.

On this dataset the performance of SMALI (comparable to

Scansite [19] although with better accuracy for some SH2

domains) is 112 correct interactions predicted over a total of 335

interactions (26 domains, SMALI doesn’t have models for LCP2

and SOCS2 domains), while our approach identifies 213 true

Prediction of SH2-Peptide Interactions
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interactions (see Figure 3). In particular, we correctly predicted all

the interactions predicted by the SMALI except two interactions

for NCK1 and SRC SH2 domain each.

Note that we have taken care to exclude all the interaction data

in the PhosphoELM database from our training sets (unfortunately

this cannot be done for the SMALI tool since we could use only

the pre-trained version).

Analysis of Existing Approaches
We further investigate the reliability and the generalization

capacity of the two state-of-the-art methods: SMALI and energy

model.

SMALI performance on Microarray data. We use dataset

II and III to analyze the correlation between the experimental

affinity values and the relative SMALI scores. Dataset II contains

3255 interactions between 105 SH2 domains and 31 pY peptides.

The strenght of the interaction is measured by the apparent

dissociation constant [34], denoted as KD. KD values are available

also for dataset III (which contains 3485 interactions between 85

SH2 domains and 41 pY peptides). Interactions are considered

reliable when their associated KD values are lower than 2 mm.

We compute the relative SMALI score for the SH2-peptide

interactions in both dataset II and III. A relative SMALI score $ 1

is considered indicative of a true interaction.

In Figure 4, we report a box plot for the distribution of the

relative SMALI scores vs. the KD values. We note that a large

fraction of interactions that have KD values lower than 2 mm

(experimental evidence for a strong binding case) have also low

relative SMALI scores (no predicted interaction). If we consider

only the non binding interactions we observe a Spearman rank

correlation r~ 20.12 w.r.t. the SMALI score (we would expect a

large negative value for good predictive capacity). If we consider

the binding interactions we see that the average SMALI score is

0.53 6 0.27, significantly below the unit threshold.

An illustrative case [34] is the interaction between domain

ABL1 and peptide ErbB2 pY1139 which has an experimentally

KD value of 0.16 mm (indicating a very high affinity and a high

probability of binding). Here however, the SMALI tool predicts no

interaction, giving a relative score of 0.84 (below the unit

threshold). Our model instead correctly predicts the binding with

a margin of 0.999.

Energy model performance on microarray data. The

energy model [31] was tuned using information from a large scale

microarray experiment [34] (our dataset II).

When we apply this energy model on the dataset II, not

surprisingly, we obtain the results reported by [31]; namely TPR

0.90 and FPR of 0.06. More precisely we could determine the

threshold value that achieves the reported classification results. In

Figure 5 (a) there is a clear energy difference between the binding

and the non-binding pairs. The software was kindly made

available to us by Zeba Wunderlich.

Figure 1. Flowchart for the iterative negative data filtering. An initial high quality dataset is extracted from experimental evidence. If the
negatives are in excess (right branch) then we simply duplicate the positive instances. If the positives are in excess (left branch) then we make an
initial model using over-sampled negatives; this model is then used to score all the available peptides. Those that are more confidently predicted as
negatives are added to the dataset. The procedure is iterated until a balanced dataset is reached. The final model is computed on the balanced
dataset.
doi:10.1371/journal.pone.0062732.g001

Prediction of SH2-Peptide Interactions

PLOS ONE | www.plosone.org 4 May 2013 | Volume 8 | Issue 5 | e62732



Table 1. Comparison of speci city and sensitivity.

Domains Original Random re-sample Neg Semisup

Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity

ABL1 0.54 60.08 0.84 60.1 0.84 60.17 0.45 60.09 0.75 60.14 0.68 60.14

ABL2 0.53 60.33 0.88 60.09 0.81 60.32 0.35 60.1 1 60 0.55 60.17

APS 0.6460.11 0.8260.08 0.88 60.13 0.55 60.16 0.67 60.14 0.74 60.13

BCAR3 0.44 60.29 0.72 60.07 0.7 60.1 0.38 60.15 0.55 60.18 0.56 60.09

BLK 0.55 60.14 0.92 60.04 0.8 60.11 0.63 60.07 0.7 60.19 0.78 60.11

BMX{ 0.74 60.05 0.79 60.09 – – – –

BRDG1{ 0.76 60.11 0.82 60.08 – – – –

BTK 0.54 60.11 0.78 60.08 0.86 60.1 0.36 60.16 0.88 60.1 0.64 60.2

CRK 0.67 60.16 0.97 60.03 0.96 60.1 0.68 60.12 0.85 60.13 0.89 60.05

CRKL 0.63 60.17 0.92 60.05 0.96 60.09 0.71 60.13 0.94 60.09 0.8 60.12

CTEN 0.89 60.08 0.7 60.08 – – – –

E105251 0.57 60.16 0.83 60.07 0.92 60.08 0.43 60.06 0.69 60.09 0.75 60.06

E109111 0.65 60.29 0.89 60.04 0.88 60.07 0.55 60.11 0.81 60.13 0.67 60.15

E185634 0.8 60.11 0.99 60.03 0.95 60.11 0.54 60.2 0.9 60.14 0.86 60.05

EAT2 0.66 60.2 0.94 60.05 0.85 60.04 0.63 60.09 0.83 60.1 0.85 60.11

FER{ 0.92 60.06 0.85 60.14 – – 0.95 60.05 0.69 60.12

FES{ 0.92 60.08 0.82 60.11 – – – –

FGR 0.54 60.05 0.86 60.09 0.78 60.13 0.71 60.05 0.64 60.15 0.85 60.09

FRK 0.42 60.33 0.96 60.04 0.72 60.3 0.66 60.18 0.65 60.25 0.86 60.07

GRAP2 0.93 60.08 0.97 60.03 0.9 60.07 0.94 60.06 0.95 60.08 0.96 60.04

GRB10 0.49 60.1 0.85 60.03 0.85 60.05 0.29 60.12 0.94 60.09 0.43 60.16

GRB14 0.48 60.23 0.9 60.03 0.84 60.1 0.47 60.11 0.6 60.18 0.7 60.13

GRB2 0.87 60.05 0.91 60.06 0.91 60 0.91 60.06 0.93 60.04 0.9 60.06

HCK 0.55 60.25 0.91 60.04 0.82 60.13 0.5 60.09 0.79 60.21 0.75 60.08

INPPL1 0.64 60.06 0.82 60.07 0.84 60.15 0.45 60.07 0.69 60.16 0.8 60.07

ITK 0.71 60.22 0.85 60.06 0.91 60.1 0.53 60.09 0.95 60.06 0.72 60.11

LCK 0.55 60.09 0.87 60.07 0.88 60.05 0.5 60.07 0.7 60.09 0.73 60.08

LCP2 0.85 60.04 0.76 60.07 – – – –

LYN 0.62 60.17 0.83 60.13 0.75 60.16 0.47 60.17 0.77 60.12 0.67 60.18

MATK 0.83 60.17 0.79 60.07 – – – –

MIST 0.3 0.45 0.94 60.04 0.9 60.22 0.41 60.1 0.5 60.5 0.77 60.07

NCK1 0.63 60.11 0.83 60.08 0.78 60.09 0.51 60.17 0.84 60.14 0.71 60.13

NCK2 0.71 60.14 0.86 60.1 0.94 60.06 0.39 60.07 0.96 60.06 0.63 60.09

PTK6 0.52 60.14 0.89 60.09 0.93 60.07 0.42 60.09 0.78 60.19 0.68 60.1

SH2B 0.51 60.25 0.86 60.02 0.85 60.05 0.59 60.1 0.67 60.19 0.78 60.06

SH2D1A 0.4 60.09 0.88 60.06 0.68 60.12 0.55 60.06 0.63 60.21 0.66 60.08

SH2D2A 0.47 60.11 0.87 60.08 0.82 60.11 0.43 60.13 0.73 60.18 0.61 60.1

SH2D3C{ 0.61 60.21 0.9 60.04 – – – –

SHC1 0.53 60.19 0.83 60.05 0.92 60.04 0.42 60.28 0.69 60.17 0.71 60.12

SHC3{ 0.71 60.04 0.79 60.08 – – – –

SOCS2 0.45 60.27 0.96 60.04 0.9 60.14 0.52 60.1 0.7 60.21 0.89 60.1

SOCS5 0.6 60.42 0.99 60.03 0.8 60.27 0.51 60.17 0.9 60.22 0.84 60.12

SRC 0.35 60.16 0.95 60.03 0.85 60.16 0.61 60.07 0.65 60.21 0.73 60.08

TEC 0.57 60.11 0.9 60.09 0.8 60.1 0.53 60.13 0.72 60.08 0.76 60.11

TENC1 0.55 60.23 0.89 60.08 0.85 60.08 0.44 60.12 0.8 60.12 0.66 60.07

TENS1 0.58 60.23 0.87 60.09 0.87 60.05 0.49 60.12 0.77 60.15 0.78 60.11

TNS 0.57 60.12 0.87 60.05 0.73 60.13 0.68 60.03 0.7 60.09 0.83 60.04

TXK 0.47 60.1 0.86 60.07 0.82 60.09 0.53 60.17 0.65 60.12 0.74 60.11

Prediction of SH2-Peptide Interactions
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However, when we apply the same energy model on dataset III

[35], we obtain quite a different result. Figure 5 (b) clearly

indicates that there are no prominent energy differences between

the binding and non-binding pairs. Moreover, we observed in this

case there is no threshold that can significantly discriminate

between the binding and the non-binding cases (see also AUC

ROC results in Figure S4). This seems to indicate an overtraining

issue with consequent inability of generalization to a different

experimental setup.

Genome-wide Analysis of Human SH2 Domains
We have performed a genome-wide analysis to uncover

unknown interacting partners for each of the SH2 domain used

in our study. In this analysis we have made use of prior domain

knowledge to remove peptides that are not likely to interact.

Specifically, we have considered three criteria for eligibility of a

given pair peptide-domain: 1) presence of the tyrosine (Tyr)

residue in the peptide, 2) experimentally verified phosphorylation

of the tyrosine in the peptide, 3) co-cellular localization of the

mature protein that contains the peptide and the protein that

expresses the domain.

We have extracted the set of peptides from the UniProtKB/

Swiss-Prot database [37], which is a well known manually curated

and reviewed database. At the moment of the analysis, the

UniProtKB/Swiss-Prot database, release 2012-06, contained

20225 human proteins with ,300 000 (298 637) tyrosine

containing peptides.

The second filter has been implemented using the annotated

information in the PhosphoSitePlus database [38]; in this way we

have selected only those phosphotyrosine peptides whose phos-

phorylation has been experimentally verified. At the moment of

the analysis the PhosphoSitePlus database contained 30228

phosphorylation sites from 10688 human proteins. We have

ignored those peptides that were not present in the UniProtKB/

Figure 2. Comparison of AUC ROC and precision-recall curve of three different approaches. (a) Showing the comparison of the AUC ROC
for the SVM performance (solid red line), the SMALI performance (dashed green line) and the performance of energy model (dotted blue line). This
figure clearly indicates the SVM performance with 0.83 AUC ROC is significantly higher than the SMALI and energy model approaches with 0.71 and
0.62 AUC ROC respectively. (b) Showing the comparison of the precision-recall curve for the SVM performance (solid red line), the SMALI performance
(dashed green line) and the performance of energy model (dotted blue line). In this case the SVM performance with 0.93 precision-recall curve is
higher than the SMALI and energy model approaches with 0.87 and 0.81 precision-recall curve respectively.
doi:10.1371/journal.pone.0062732.g002

Table 1. Cont.

Domains Original Random re-sample Neg Semisup

Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity

VAV1{ 0.86 60.12 0.88 60.04 – – – –

VAV2{ 0.82 60.11 0.83 60.14 – – – –

YES1 0.53 60.22 0.83 60.05 0.75 60.2 0.43 60.07 0.73 60.21 0.69 60.12

Avg* 0.57 0.88 0.85 0.53 0.77 0.74

We compare the sensitivity and specificity of each SH2 domain, achieved by using three different datasets (original imbalanced dataset, balanced dataset with randomly
chosen negative data and balanced dataset with good negative data derived by self training process).
*The average is computed over all domains except domains indicated with {. The table indicates the datasets generated by the self training strategy perform better.
doi:10.1371/journal.pone.0062732.t001
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Swiss-Prot database obtaining finally 27481 phosphorylation

peptides out of 9621 proteins.

The third filter was implemented considering the terms relative

to the sub-cellular localization hierarchy in the controlled

vocabulary of the Gene Ontology database [39]. In case of

multiple cellular locations (e.g. GRB2 protein can be found in

nucleus, cytoplasm, endosome and golgi apparatus [40]) we

consider a peptide viable for interaction if it shares at least one of

the terms with the domain. Finally, we ignored proteins (such as

SHD/E105251) for which no localization annotation is available.

All eligible peptides-SH2 domains pairs were scored by the

trained models and ranked according to the SVM scores.

Considering the top ranked and most reliable 50 predictions (see

File S1), we offer the following hypothesis.

1) The SH2-domain of ABL1 is predicted to bind to Y307 of

the adaptor protein GAB1. ABL1 is part of the oncogenic

protein BCR-ABL, which is generated by a (9;22) translo-

cation resulting in the so-called Philadelphia chromosome

and is found in CML (chronic myelogenous leukemia) [41].

BCR-ABL has been shown to be dependent on GAB

adaptor proteins, in particular GAB2. It has been demon-

strated that GAB2 in CML cells confers resistance to

multiple BCR-ABL inhibitors [42]. The known interaction

between BCR-ABL on one side and GAB adaptor proteins

on the other side can be described as following: the small

adaptor protein GRB2 binds to phosphorylated Y177 on

BCR-ABL via its central SH2-domain and via its SH3-

domains it interacts with proline-rich sequences within both

GAB proteins, GAB1 and GAB2 [43]. Our finding would

suggest a second so far unknown mode of BCR-ABL/GAB1

interaction that is GRB2-independent and based on a direct

interaction between the BCR-ABL (ABL1) SH2-domain

and tyrosine-phosphorylated GAB1.

2) Our model indicates that the SH2-domain of the adaptor

protein CRKL interacts with phosphorylated Y215 of

ABL1. Interestingly, CRKL has been found to be one of

the predominant substrate of the oncogenic kinase BCR-

ABL [44]. This suggests that CRKL is not only a substrate,

but also an interaction partner of BCR-ABL. Most likely,

the interaction promotes phosphorylation.

3) TEC-family kinases are multidomain cytoplasmic tyrosine

kinases, which comprise, amongst others, an N-terminal

Table 2. Comparison of sensitivity with fixed specificity.

Domains Specificity SMALI
Energy-
model SVM-model

Sensitivity Sensitivity Sensitivity

ABL1 0.95455 0.21023 0.03409 0.29545

ABL2 0.95238 0.07500 0.02500 0.55000

APS 1.00000 0.15441 0.10294 0.41176

BCAR3 0.96226 0.05435 0.10870 0.28261

BLK 0.90000 0.26271 0.36441 0.52966

BMX 1.00000 0.11250 0.01250 0.06250

BRDG1 1.00000 0.00000 0.01176 0.40000

BTK 0.96491 0.10680 0.03883 0.36893

CRKL 1.00000 0.26718 0.08228 0.57595

CRK 1.00000 0.37975 0.00000 0.64122

CTEN 0.87500 0.53191 0.17021 0.74468

E105251 1.00000 0.04965 0.04255 0.17021

E109111 0.98246 0.00000 0.05941 0.40594

E185634 1.00000 0.27778 0.09722 0.66667

EAT2 0.96610 0.31429 0.05000 0.37857

FER 0.98333 0.56410 0.02564 0.51282

FES 0.88333 0.67273 0.29091 0.87273

FGR 0.88000 0.32117 0.49270 0.52920

FRK 0.94444 0.21212 0.17803 0.20455

GRAP2 0.88136 0.96914 0.61111 0.96914

GRB10 0.98113 0.13889 0.04167 0.38889

GRB14 0.87931 0.28415 0.22951 0.49180

GRB2 0.88889 0.90476 0.80952 0.90476

HCK 0.89474 0.28241 0.32870 0.51389

INPPL1 0.98361 0.12295 0.04918 0.34426

ITK 0.88372 0.30667 0.73333 0.78667

LCK 0.96429 0.23256 0.09302 0.43256

LCP2{ 0.96721 – 0.01695 0.57627

LYN 1.00000 0.11966 0.02564 0.01961

MATK 0.95000 0.11321 0.13208 0.52830

MIST{ 1.00000 – 0.19277 0.55422

NCK1 0.94118 0.50459 0.29358 0.44037

NCK2 0.97917 0.31683 0.04950 0.55446

PTK6 0.96667 0.33824 0.00980 0.26961

SH2B 0.96364 0.02198 0.11538 0.42308

SH2D1A 0.92982 0.19162 0.07784 0.22754

SH2D2A 0.88333 0.33036 0.17857 0.47321

SH2D3C{ 0.88889 – 0.17105 0.65789

SHC1 0.98039 0.24000 0.07333 0.36000

SHC3 1.00000 0.15517 0.13793 0.12069

SOCS2{ 1.00000 – 0.06250 0.39583

SOCS5{ 1.00000 – 0.18571 0.75714

SRC 0.97500 0.23476 0.16159 0.27744

TEC 0.95918 0.19018 0.28834 0.24540

TENC1 1.00000 0.13990 0.02073 0.24870

TENS1{ 1.00000 – 0.00813 0.14634

TNS 0.94643 0.24876 0.07463 0.49254

Table 2. Cont.

Domains Specificity SMALI
Energy-
model SVM-model

Sensitivity Sensitivity Sensitivity

TXK 0.94545 0.16541 0.14286 0.43609

VAV1 0.87500 0.35593 0.33898 0.88136

VAV2 0.93878 0.22500 0.15000 0.62500

YES1 0.97500 0.21101 0.08257 0.41284

Avg.* 0.95 0.26 0.17 0.45

We compare the sensitivity of three different approaches. The specificities
generated by SMALI program and then we used the same specificities to find
the correspondence sensitivity.
{SMALI doesn’t have model for these SH2 domains, therefore, we used high
specificity for those domains.
*The average is computed over all domains except domains indicated with {.
doi:10.1371/journal.pone.0062732.t002
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PH-domain. This PH-domain interacts with the phospho-

lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3), which

is generated by PI3K enzymes upon receptor activation

[45]. PI3K class IA, which is activated downstream of

multiple receptors, such as immune receptors and cytokine

receptors, comprises various catalytic and regulatory

subunits [46]. Interestingly, our model found that different

TEC-family kinases (BTK, ITK, and TEC) via their SH2-

domains can interact with various regulators subunits of

PI3K class IA: BTK interacts with Y74 of p85b; ITK

interacts with Y464 of p85b, with Y467 and Y556 of p85a,

and with Y199 of p55c; TEC interacts with Y74 of p85b and

Y556 of p85a. Since the regulatory subunits of PI3K are

necessary to guide the catalytic PI3K subunits to their

substrate in the plasma membrane, interaction of TEC

kinases with the regulatory subunits would enable them to

be close to the newly generated PIP3, which then is

necessary for their activation. Using such a mechanism,

TEC kinases always could be close to newly generated PIP3

enabling immediate activation.

4) The inositol-5-phosphatase SHIP1 has been shown to

interact with TEC via TEC SH3-domain binding to a

proline-rich sequence in the C-terminus of SHIP1 [47]. Our

model suggests that there is a second mode of interaction

between SHIP1 and TEC, namely between the SH2-

domain of TEC and the phosphorylated Y221 of SHIP1.

Such a mode of interaction would be called JbidentateJ

and has already been found for the interaction between

SHIP1 and one of its main interaction partners, the adaptor

protein SHC. In that case, the PTB-domain of SHC binds

to a phosphorylated tyrosine within the C-terminus of

SHIP1 and the SH2-domain of SHIP1 binds to a

phosphorylated tyrosine within SHC [48]. Using such a

bidentate mode would clearly strengthen the interaction

between the two partners.

5) The inositol-5-phosphatase SHIP1 counteracts PI3K signal-

ing via its centrally located catalytic domain, hydrolyzing the

phospholipid PIP3 [48]. Moreover, it has been demonstrat-

ed to negatively regulated p21Ras signaling via complex

formation with the adaptor protein DOK1 and the p21Ras

GTPase activating protein RASGAP [49]. So far, such an

interaction or function has not been described for the second

family member, SHIP2. Interestingly, our model suggests

the interaction of the SH2-domain of SHIP2 (INPPL1) with

phosphorylated Y650 of another p21Ras GTPase activating

protein, RASA2. This would suggest that both SHIP

proteins can realize comparable functions, however, using

different modules. The qualitative outcome might be the

same, although regulation might be differentially accom-

plished.

6) Induction and regulation of calcium mobilization down-

stream of the B-cell antigen receptor is crucial for

differentiation and activation of B-lymphocytes. It was

shown that the tyrosine-phosphorylated adaptor protein

DOK3 interacts with the SH2-domain of the adaptor

protein GRB2. Stork et al have demonstrated that this

DOK3/GRB2 module negatively influences the assembly of

the calcium initiation complex and/or inhibits the enzy-

matic activity of the tyrosine kinase BTK, which is crucial

for calcium mobilization to occur [50]. Our data indicated

that the SH2-domain of BTK directly interacts with DOK3

phosphorylated on Y398.Though our analysis was per-

formed in the human system and the study by Stork et al

was making use of the chicken DT40 B-cell system, sequence

comparison suggests that the same tyrosine (Y398 in human

and Y331 in chicken [50]) could bind to GRB2 and BTK.

Figure 3. Performance evaluation on manually curated database, PhosphoELM. (a,b) Performance of SMALI and our program on the
experimentally validated data. In both (a and b) case the brown bars indicate the actual experimentally validated interactions for individual SH2
domains where the red and green bars indicate the predicted interactions by SVM models and SMALI respectively. (a) Showing those SH2 domains
having at least 10 interactions in PhosphoELM 9.0 and (b) Showing the SH2 domains having less than 10 interactions in PhosphoELM 9.0 database.
doi:10.1371/journal.pone.0062732.g003
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Figure 4. Comparison of the relative SMALI scores with two different microarray experiments. (a,b) Barplots of relative SMALI score with
microarray experiments. It separates the KD (apparent equilibrium disassociation constant) into five parts, i.e 1–499, 500–999, 1000–1499, 1500–1999
and . = 2000 (unit is in nm). Among them KD values less than 2000 nm were considered as positive interactions and considered as negative
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This would add another layer of complexity to the

regulation of calcium mobilization in B-lymphocytes.

We performed a second type of analysis on the same top 50

predictions in order to uncover novel functionalities using the

DAVID tool [51]. The tool offers the possibility to perform a term-

centric enrichment analysis on more than 40 different annotation

categories. Analyzing the highly enriched results we found, for

example, that CRKL interacts with a group of proteins (Swiss-Prot

ID: P42684, Q9UQM7, Q13555, P00519, P42345, Q13554,

Q13557) that play an important role in ErbB signaling pathway (as

reported in the KEGG pathway database [52]). We note that the

SMALI tool misses all these associations (see File S2 for more

details).

Finally, we found that some peptides (P05067-755-761

NGYENPT, P61106-12-18 FKYIIIG, P09211-48-54 CLYGQLP,

P25788-103-109 FGYNIPL, P29350-562-568 DVYENLH,

Q05397-923-929 KVYENVT, P08865-137-143 ASYVNLP,

P13533-552-558 KLYDNHL, P56945-10-16 ALYDNVA,

O15530-374-380 GNYDNLL) are predicted to interact a-specif-

ically with more than 40 SH2 domains. In addition, we observed

3-phosphoinositide-dependent protein kinase 1 (Uniprot-id:

O15530) targeted by the most number (34 domains) of SH2

domains that share the same cellular compartment and functions

annotated in GO-term database.

Conclusions
SH2-peptide interactions are an important component of cell

signaling. Because of the limited availability of experimentally

proven interactions, machine learning approaches have to be used

in order to generalize to combinations that have not been

experimentally investigated. High-throughput experimental meth-

ods seem to be a perfect data source for training these models.

There are, however, two order of problems in these data: a) a

significant noise component, and b) quite an imbalance between

confirmed interactions (positive data) and experimentally proven

non-interactions (negative data). In addition, current state-of-the-

art models for SH2-peptide interaction prediction are based on

linear models, which are not capable of handling complex

interactions patterns.

In this paper, we propose a model that tackles these issues. On

the one hand, we propose an iterative re-balancing strategy to

compensate the imbalance problem. On the other hand, to model

complex interaction patterns we use a polynomial kernel support

vector machine and we avoid overfitting issues employing a

regularization scheme.

In our study we used three high throughput data: two derived

from microarray experiments and one from a peptide array library

experiment. We carefully compared our approach with state-of-

the-art tools, namely SMALI and an energy based structural

model, achieving a significantly better generalization performance

(measured as cross validated AUC ROC and AUC PR). This

result was additionally confirmed on a manually curated database

(PhopshoELM) of experimentally validated SH2-peptide interac-

tions.

Finally, we performed a genome-wide prediction of human

SH2-peptide interactions. We report some novel interactions

between SH2 domains and tyrosine-phosphorylated proteins: as

an example we find that oncogenic protein BCR-ABL (ABL1) may

directly bind (not dependent on GRB2) with pY307 of the adaptor

protein GAB1.

We have made the learned models, as well as all the genome-

wide interaction predictions, available to the community.

Materials and Methods

High Density Peptide Arrays Data
Dataset I. From the NetPhorest database [53] we collected

information on 61 SH2 domains and 920 phosphorylated peptides

for a total of 14678 interactions. After removing all redundancies

we obtained 7544 positive interactions.

interactions otherwise. (a) Barplot of relative SMALI score with dataset II and (b) Barplot of relative SMALI score with dataset III. In both cases it is
clearly observed that there is no correlation between the relative SMALI score with the KD values.
doi:10.1371/journal.pone.0062732.g004

Figure 5. Binding and non-binding energy comparison with different microarray data. (a) Plots for the binding and non-binding energies
derived from dataset II, indicates there are clear difference between the binding (red dots) and non-binding interactions (green boxes).(b) With the
data derived from dataset III, surprisingly we observed that there is no clear differences between the binding (red dots) and non-binding (green
boxes) interactions. The Energy calculation program was kindly provided by Zeba Wunderlich [31].
doi:10.1371/journal.pone.0062732.g005
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Note that for high density peptide array experiments, there is

evidence only for positive interactions. One cannot however

assume that the remaining 61692027544 = 48576 interactions

are of the non-binding type (i.e. negative interactions). It can

happen that these domain-peptide interactions were just not

observed in the assay due to the experimental stringency (i.e.

consistency among replicates).

Microarray Data
Dataset II. From the protein microarray experiments in [34]

we have considered the SH2-peptide interactions data excluding

the PTB-peptide interactions. There are 115 SH2 domains and 20

singly phosphorylated peptides from ErbB2 and ErbB3 proteins.

Note that there are 10 cases where a single protein has both a C-

terminal and N-terminal SH2 domain. Since the database does

not report the assignment of which peptide specifically binds to

which of the two domains (N and C terminal) we have discarded

the interactions related to these proteins. From this dataset we

have collected 105620 = 2100 interactions, with 160 positive

interactions and the remaining 21002160 = 1940 being consid-

ered as negative interactions.

Dataset III. From the protein microarray experiments in

[35] we have considered the SH2-peptide interactions data

excluding the PTB-peptide interactions. In this study there are

85 SH2 domains and 41 singly phosphorylated peptides from

EGFR, FGFR, IG1FR proteins. We have proceeded in an

analogous fashion as with dataset II and we have collected

85641 = 3485 interactions with 314 positive interactions and

34852314 = 3171 negative interactions.

Curated Test Data
Dataset IV. From PhosphoELM [36], which is a high-quality

manually curated database, we have extracted the interactions for

28 SH2 domains with 339 peptides.

Dataset Compilation
We have combined positive and negative data from two

microarray datasets (dataset II and dataset III) using the measured

apparent equilibrium dissociation constants [34,35] (KD value) to

determine the class label. SH2-peptides interactions with KD

values lower than 2000 nM were considered as binding (positive

interactions) while all other pairs were considered as non-binding

(negative interactions).

The total number of positive interactions is 474 (160 and 314

respectively from dataset II and dataset III), while the total

number of negatives interactions is 5111 (21002160 = 1940 and

34852314 = 3171 respectively).

Dataset I contains 7544 positive interactions and no negative

interactions. Among the 474 positive interactions in dataset II and

III, 247 (112 and 135) were in common between the microarray

and the peptide array data. After removing the positive

interactions of dataset I from dataset II and III, we obtain 227

(48 and 179) unique positive interactions for dataset II and III.

Surprisingly, we found 149 interactions for which the micro-

array data and the peptide array data are in disagreement, i.e. it is

positive for dataset I but negative for dataset II and III. We have

therefore discarded those interactions to reduce unreliable and

conflicting information in the training phase. As a consequence the

number of negatives from dataset II and III is reduced to

51112149 = 4962, and the number of positives in dataset I is

reduced to 75442149 = 7395.

To compose our datasets we used the positive interactions from

the more reliable dataset I (7395) and the available negative

interactions from dataset II and III (4962). The non redundant

positive data derived from microarray experiments was kept for

validation purposes.

For each of the 61 SH2 domain in dataset I we compile a

separate dataset. We discard 10 domains that have less than 40

positive interactions since no complex model can be reliably fit.

Finally we have 61210 = 51 SH2 domains for which we have

6742 positive and 2523 negative interactions. See Table 3 for

further details.

Data Modeling
Previous studies show that residues in the close vicinity of the

phosphotyrosine are highly predictive for domain-peptide binding

[19,21,31]. For example it is known that the SH2 domain of CRK

binds peptides where amino acid Leu or Pro is in position +3,

however the presence of other amino acids (i.e. His, Arg, Ala, Pro)

in position +1 and +2 can inhibit the interaction. [32].

Here we follow the literature and restrict the peptide sequence

to 6 specific positions, namely we extract the amino acids in

positions ranging from 2 upstream to 4 downstream of the

phosphotyrosine residue. A peptide is therefore mapped into a

binary vector x living in a 2066 = 120 dimensional (the central

amino acid is always a phosphotyrosine and is therefore not

included in the encoding), that is, for each position, we reserve 20

dimensions (one for each amino acid) and encode the amino acid

type with a 1 in the corresponding dimension and 0 elsewhere.

For each domain Dj we compile a data set encoded as a set of

pairs (x1,c1),.,(xn,cn) where, xi is the binary feature vector for

peptide Pi with the class label ci[f{1,1g. The class label is +1 if

the domain Dj interacts with peptide Pi and 21 otherwise.

Table 3. Ensemble data from literature and the final data used in this study after compilation.

Original Data Selected Data

Datasource # D # P # I #Pos #Neg #Ukn #D #P #I #Pos #Neg #Ukn

Dataset I 61 920 56120 7544 – 48576 51 880 44800 6742 – 38138

Dataset II 105 20 2100 160 1940 – 51 20 1020 48 851 –

Dataset III 85 41 3485 314 3171 – 46 41 1886 179 1672 –

Dataset IV 63 359 – 878 – – 28 197 – 339 – –

# D is the number of domains, # P is the number of peptides, # I is the number of interactions, # Pos is the number of positive data, # Neg is the number of negative
data and # Ukn is the number of unknown data.
doi:10.1371/journal.pone.0062732.t003
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Predictive Model
As predictive model we employed a regularized polynomial

kernel support vector machine SVM [54]. We used the SVM

implementation in C language provided in SVM light [55].

Predictive performance measures. We formulated a

learning problem for each SH2 domain. The predictive perfor-

mance for each problem was assessed computing 5 measures:

sensitivity, specificity, precision, area under the receiver operating

characteristics curve and area under the precision recall curve.

These are defined as: Sensitivity=Recall ~ TP
TPzFN

,

Specificity~ TN
TNzFP

, Precision~ TP
TPzFP

, where TP denotes true

positive, that is SH2 domain-peptide pairs predicted correctly as

binding pairs, TN denotes true negative, i.e. SH2 domain-peptide

pairs predicted correctly as non-binding pairs, FP denotes false

positive, i.e. SH2 domain-peptide pairs predicted incorrectly as

binding pairs and FN denotes false negative, i.e. SH2 domain-

peptide pairs predicted incorrectly as non-binding pairs.

The area under the receiver operating characteristics curve

(AUC ROC) is defined as the area under the curve obtained by

plotting the fraction of true positives out of the positives

(TPR = true positive rate) vs. the fraction of false positives out of

the negatives (FPR = false positive rate), at various threshold

settings.

The area under the precision recall curve (AUC PR) is defined

as the area under the curve obtained by plotting precision as a

function of recall.

Model fitting protocol. The model parameters that can be

tuned are the polynomial degree d[f1,2,3g and the cost

parameter C[f0:01,0:1,1,10g used to trade off generalization for

data fitting.

In order to estimate the expected predictive performance for

our approach we computed the 5 measures described above under

a stratified 5-fold cross-validation scheme.

In particular, all the available data is partitioned into 5 parts

ensuring the same proportional distribution of positive and

negative instances in each part. Each part is used in turn as a

held out test set, while the remaining 4 parts are used as training

set. We determined the optimal parameters configuration (i.e. the

pair (d,C)) as the minimizers of a 10-fold cross-validated AUC

ROC measure for each of the 5 training sets, independently. We

then selected the most frequent parameters configuration pair

(d,C). This was the configuration finally used in the stratified 5

fold cross-validation.

We also performed 10 repetitions of a 75%, 25% random split

of the available data to create 10 train/test data sets. We

proceeded in an analogous fashion (10-fold cross-validation) to

determine the most frequent parameters configuration pair (d,C).
The final average performance estimate is comparable to that

obtained in the 5-fold cross-validation setting (see Figure S1).

Machine Learning Model
Modeling issues: a short review on the imbalanced

dataset problem. From an in-silico modeling point of view, a

key characteristic of the problem at hand is that the available

supervised information on peptide binding induces imbalanced

datasets, i.e. for certain SH2 domains, information on real

interactions can be up to 15 times more abundant than

information on the lack of interaction (see Table S1). In literature

it is known (see [56] for a recent survey) that severe imbalanced

class distributions negatively affects the performance of machine

learning approaches. The exponential increase in the number of

publications dedicated to imbalanced data management in the last

decade is a clear indication of the importance of the issue.

The problem arises since mainstream machine learning

algorithms are not designed to compensate for skewed class

distributions, and concentrate on being accurate only on the

majority class. Two major causes of problems with class imbalance

are: a) the choice of an adequate performance measure to guide

the selection of the best hypothesis, and b) the discrepancy in the

data distribution between the model induction (train) and the

model application (test) phase [57].

To illustrate point a) consider a typical protein interaction

prediction problem: while the number of possible interactions

grows quadratically with the number of proteins, the number of

positive interactions grows typically only linearly (i.e. one protein

will bind to a small fixed number of other proteins). In this case the

standard accuracy measure is not appropriate since a rational

choice based on maximizing the predicted accuracy (in an equal

cost scenario) would inevitably be biased towards the majority

case, and hence the algorithm will almost always predict a

negative/no-interaction response. To deal with this issue, there

have been developed techniques that try to explicitly and

differently model the cost of each type of mistake. A major

drawback of this approach is that the optimal cost matrix is

unknown and the result is therefore, highly dependent on expert

knowledge and a set of arbitrary/heuristic choices.

As for point b), it has been recognized that the issue is linked to

the within-class imbalance problem and the small disjuncts problem

[58]. The phenomenon arises when the class concept is composed

by many sub-concepts/sub-clusters each represented by relatively

few examples. Standard approaches achieve suboptimal results

here, since not enough examples are available to model an

adequate response for these exceptional although significant cases.

Standard approaches are further compromised if the sampling

procedure in the test phase differs from the one used to collect the

training set. This typically happens when a small sub-cluster in the

training set is over-represented in the test set (e.g. if cellular

conditions or experimental parameters changes during data

collection).

Some guidelines are however emerging in the machine learning

literature on how to counter-balance the small-disjunct problem;

the main recommendation is to prefer intelligent over-sampling

techniques to down-sampling as the latter always implies a loss of

information which ultimately results in under-performing models.

General approaches to over-sampling (such as the popular

SMOTE (synthetic minority oversampling technique) [59]) have

the drawback of requiring an explicit instance representation

(generally in some vector space of relatively low dimensionality)

and are therefore more difficult to adapt to the type of data

typically encountered in bioinformatics applications (i.e. sequences

or graphs). Fortunately, in our case we can circumvent this

problem by exploiting a useful property of the datasets we have at

our disposal: instead of creating novel instances we can make use

of a large quantity of results available from high density peptide

array experiments; specifically we can select those peptides for

which no definitive interaction information is available. In this

way, we do not have to invent plausible biological peptide

sequences to populate the neighborhood of minority class

representatives. Rather, we have to perform the easier task of

estimating when an existing peptide is likely to belong to the

minority concept.

Learning issues: a short review on the semi-supervised

problem. The task of estimating when an existing peptide

belongs to the non-interaction class can be viewed as a special

instance of the well studied semi-supervised learning task (SSL)

[60], i.e. learning from a small amount of labeled data and a large

amount of unlabeled data. Here, differently from the general
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problem formulation, we are interested in using the unsupervised

material to have a better characterization only of the minority

class; in our case, the one representing the absence of protein-

peptide interaction.

Several strategies have been developed to deal with the SSL

problem, such as self-training, expectation maximization (EM)

with generative mixture models, co-training, transductive support

vector machines, and graph-based methods. In order for SSL

methods to use effectively the small amount of labeled data, strong

model assumptions need to be made. Note that this is a critical

step, as it has been observed that if the model assumptions are not

matching the problem nature, then using unsupervised material

hurts the predictive performance. We therefore review the

assumptions made by each SSL strategy, matching them to our

specific application case.

Expectation maximization techniques with generative mixture

models can be used when data is well clustered according to the

class information. In our case, clustering peptides using a metric

that makes use of all amino acid information does not induce a

good class separation, in fact it is believed that binding is the result

of the joint presence of only few specific amino acids in specific

positions.

Co-training is used when features naturally split into two sets,

with a different instance coverage, but this is not the case for our

application.

Graph-based methods perform a type of information spreading

on unsupervised instances that is meaningful when two nearby

instances (i.e. instances with similar features) tend to be in the same

class. For the same reasons detailed for the EM case, this type of

bias is not appropriate for our application.

Finally, we resort to the self-training approach, which relies only

on the good discriminative properties of the base classifier. The

method is a simple wrapper scheme around a base classifier: the

initial labeled data is used to train the classifier which then assigns

a label to the remaining material. The most confident predictions

are then iteratively added to the training set and the classifier is re-

trained. The method name derives from the fact that the classifier

uses its own predictions to teach itself. The bias is now adequate if

the base classifier can learn the importance of each combination of

amino acids in specific positions.

Regularized non-linear support vector machine. Predictive

systems based on PSSMs are essentially linear classifiers. To see why,

we review the design principles for the state-of-the-art PSSM system

SMALI [21]. Here a procedure is employed to compute a weight

matrix Sr,c with r~6 rows and c~19 columns (the Cys amino acid is

not represented). The peptide-protein interaction is predicted

computing a score value as s(x)~wT x, where x is a 114 dimensional

vector constructed as specified in the Data Modeling Section,

w~vec(ST ) where vec is an operator that transforms a matrix Mr,c

into a column vector v of size r:c, by concatenating all columns.

Peptides scoring above a predefined threshold are classified as

binding. In SMALI a relative score is defined in such a way as to have

a unit threshold. The relative score is then the ratio between the

original score and a reference score b. The classifier becomes

s(x)=b§1 which can be rewritten in a canonical linear form as

wT x{b§0.

From a machine learning perspective, the procedure employed

in SMALI to compute S and b is rather involved and heuristically

motivated. The elements in the matrix S are computed from

OPAL [21] experimental results, and essentially correspond to the

difference between the average counts of position specific amino

acids in the positive examples minus the overall average counts

(this corresponds geometrically to find the difference vector

between the center of mass of the positive set and the overall

set. Had it been the difference vector between the center of mass of

the positive set and the center of mass of the negative set, it would

have resembled the well known Fisher discriminant model). These

quantities are then transformed so to extract information theoretic

quantities as a proxy of the importance (the weight) of each

position specific amino acid.

The domain specific reference score value b is defined as the

value corresponding to the top q~4:5% raw SMALI scores over

all human proteins in the Swiss-Prot database that contain Tyr.

The choice of the fixed value 4:5% was based on two experiments

over the domains BRDG1 SH2 and GRB2 SH2, arbitrarily

chosen as representative cases. The optimal (w.r.t. F-measure)

threshold for the raw SMALI score was computed using a

selection of 1488 peptides for BRDG1 (yielding a SMALI value of

1.4) and 720 peptides for GRB2 (yielding a SMALI value of 1.65).

The percentiles corresponding to these thresholds were 3.5% for

BRDG1 and 5.5% for GRB2. The final value q~4:5% was

chosen as their average. As a result of all these choices, it is hard to

identify a clear objective for which the proposed linear solution

should be optimal.

Here we propose two ways to improve PSSM linear models: 1)

upgrading the system from linear to non-linear and 2) making the

system more robust using regularization techniques.

Non linear models allow to express decision rules that can

differentiate between the joint status of two or more position

specific amino acids and the status of the same elements taken

independently. In this way non additive effects can be modeled, for

example consider a case whereby the presence of amino acid Asn

in position +2 alone is not sufficient to guarantee the interaction

and neither is the presence of amino acid Lys in position 21.

However if these amino acids are occurring in their respective

positions at the same time then the binding occurs. Another type

of non-linear effect could raise when the presence of a either one

or the other amino acid is sufficient for binding but when they are

both present than they interfere with each other and no binding

takes place.

As a non linear model we choose to upgrade the standard linear

SVM via a polynomial kernel of the type k(x,z)~(xT zz1)d . To

see how a kernel allows an otherwise linear model to become

sensitive to multiple interacting amino acids, we briefly review the

ideas behind the ‘‘ernel trick’’ Given a linear predictive model

f (x)~sgn(Sw,xTzb), where S:,:T represent the dot product

operation, one can employ the support vector machine [6]

algorithm to determine the support elements (the non zero ai select

which, among all xi, are the support vectors) and rewrite the

decision function as f (x)~sgn(
P

i yiaiSx,xiTzb). The trick

consists now in replacing the standard dot product with a ‘‘kernel

function’’k(x,xi)~Sx,xiT, i.e. a function which is symmetric and

positive semi-definite [61]. Choosing an appropriate kernel

function allows us to transform a linear classifier into a non linear

one. Exploiting results known from the Reproducing Kernel

Hilbert Spaces theory one can equate the choice of a kernel

function to the selection of an appropriate feature mapping

function w : X.Rd and write k(x,xi)~Sw(x),w(xi)T. It is often

possible to compute efficiently k(:,:) without having to compute

w(x), i.e. without having to represent the instances explicitly in the

transformed feature space. This is particularly beneficial when the

size of representation is very large (it can also be infinite in the case

of Gaussian kernels). One of such cases is the polynomial kernel; to

fix the ideas we provide the explicit mapping of a quadratic kernel

k(x,xi)~Sx,xiT2 in the simple case of two dimensional instances

would result in w : R2.R3, e:g: (x1,x2).(x2
1,x2

2,x1x2),
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In our domain this means that with a quadratic kernel we can

model interactions between any of two positions in the peptide.

Note that in the general case one can account for all interactions of

order d by employing a polynomial kernel of degree d, without

having to explicitly enumerate all combinations. In our case, with

N~120 and a polynomial of degree d~3, we are implicitly

working in a vector space with 300K dimensions. Here, the

number of different monomials of degree d for N{dimensional

vectors can be computed as:

dzN{1

d

� �
~

(dzN{1)!

d!(N{1)!

To further improve the predictive performance we propose to

use regularization techniques to counter balance over-training

phenomena, i.e. the tendency to specialize the model on the

specific training data idiosyncrasies. It is an unfortunate state of

affairs that this aspect is often ignored in the development of novel

bioinformatics systems. In practice a regularized predictor is more

robust to noise and offers guarantees of a better predictive

behavior on unseen instances. Amongst the several ways to ensure

a regularized solution, we adopt the strategy championed in SVM,

i.e. we minimize the complexity of the model by constraining the

size of w and the degree of the polynomial d. We do this using a

cross-validation procedure in order to achieve a good compromise

with respect to the training misclassification error. In practice the

SVM optimal hyper plane is determined as the solution to a

minimization problem where the objective function combines a

term proportional to the training error and a term proportional to

the complexity of the model (computed as the norm of the hyper

plane coefficient vector). The mixing coefficient that weights the

importance of the error w.r.t. the model complexity and the

degree of the polynomial kernel are selected from a finite set of

alternatives. The best parameters combination is chosen by

evaluating the predictive performance of each specific model over

a held out set of instances (the validation set). Note that the

performance of the selected model is evaluated over a further held

out set of instances (the test set) that has never been used neither in

the training phase nor in the validation phase.
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