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Introduction

Protein-protein interactions are the most essential cellular process in eukaryotes that involve many important biological activities such as signal
transduction, maintaining cell polarity etc. Many protein-protein interactions in cellular signaling are mediated by modular protein domains. Pep-
tide recognition modules (PRMs) are an important subclass of modular protein domains that specifically recognize short linear peptides to medi-
ate various post translation modifications. Computational identification of modular domain-peptide interactions is an open problem with high rel-
evance. In this study we applied machine learning approaches to identify interacting and non-interacting pairs of modular protein domains (SH2,
SH3, PDZ) and peptides. Additionally we developed an approach to tackle the data imbalance problem using a powerful semi-supervised strategy.
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4 Tackles data imbalance problem using semi-supervised strategy
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(b) AUC PR comparison:

SVM - 0.93 (solid red line)

SMALI - 0.87 (dashed green line)
Energy model - 0.81 (dotted blue line)
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Data: Microarray and peptide array data

SH3Pep| nt Flowchart for the iterative negative data filtering:

An initial high quality dataset is extracted from
experimental evidence. If the negatives are in
excess (right branch) then we simply duplicate
the positive instances. If the positives are in
excess (left branch) then we make an initial
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4 Performance evaluation on manually curated database, PhosphoELM:
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Brown bars: validated interactions
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e Comparison when using filtered negative

| interactions for Graph Kernel (GK) and
MUSI. The error bars represent respective
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4 Performance comparison with multi-domain model:
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4 Integrates physico-chemical information

AUC PR
:.
3
>
:
..
:
AUC PR

4 Genome-wide analysis

Graph kernel feature encoding:
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hydrophobicity: very low | low | high | very high 09 L

AUC PR for the Multi-Domain Gaussian Graph Kernel (MD-G-
GK), the Single Domain Gaussian Graph Kernel (SD-G-GK), the
Single Domain Linear Graph kernel (GK) and the MUSI tool for
six related SH3 domains. The error bars represent respective
standard deviation.
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Charge: Basic (R, K, H), Acidic (D, E), Neutral (Other amino acids)

Hydrophobicity: Very high (I, L, V;, High (A, M, C,F), Low (G, T,S, W, Y, P)
and Very low (Other amino acids

position specific label 0.7
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Approach: Results:

4 PDZ domain clustering based on their binding specificity

| AUCROC-0.92

4 Performance: | AUCPR-0.94

A 5-fold cross-validation performance

(a) The AUC-ROC and (b) the AUC-PR obtained
by sequence-based feature encoding method.

4 Models high-order correlations between amino acid position
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4 Negative data filtering using semi-supervised technique
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Performance comparison of three different tools. Red, green and blue bars in-
dicate the predicted performances by our tool (SVM), DomPep and MDSM, * B
respectively. The figure clearly shows that our tool (SVM) achieved better per-

Phylogenetic tree of all available PDZ domains from human,
mouse, fly and worm. The MCL clustering output was mapped
onto the phylogenetic tree. A total number of 138 PDZ fami-
lies are presented by 138 colors. iTOL was used for the visual-
ization.

formance.
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