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Abstract. Haplotype inference is a crucial topic in genetic studies and also repre-
sents a challenging computational problem. A significant number of combinatorial ap-
proaches tackle the haplotype inference problem either forpedigrees or for unrelated
individuals. This work integrates two relevant and well-known constraint based haplo-
typing approaches. The Minimum Recombinant Haplotyping Configuration (MRHC)
problem targets the haplotyping solution which minimizes the number of recombinant
events within a pedigree. MRHC only takes into consideration the family information.
In contrast, the Haplotype Inference by Pure Parsimony (HIPP) problem aims at find-
ing a solution which minimizes the number of distinct haplotypes. The HIPP approach
is adequate for phasing unrelated individuals from the samepopulation. This paper
proposes a method for inferring haplotypes for individualsof the same population,
although organized in different families, thus combining both MRHC and HIPP ap-
proaches. This new method can take into account family information and population
information, both important in haplotype inference. Experimental results show that
the proposed approach is more accurate, both in terms of switch error rate and miss-
ing error rate, than the MRHC approach (performed by the PedPhase tool), on sets of
families from the same population.

1 Introduction

Genetic association studies with phenotypic variations are only possible with a deep knowl-
edge of the genetic differences between individuals. A veryimportant and challenging task
to understand genetic variations consists of inferring haplotypes from genotypes.

Constraint based methods for haplotype inference have beenshown to be a practical
and relevant alternative to statistical approaches, either for phasing pedigrees [9, 11] or un-
related individuals [4]. Nonetheless, a study comparing the haplotype inference methods
using pedigrees and unrelated individuals [12] points out that a new method which takes
into consideration both pedigree and population information is necessary. Indeed, existing
haplotyping methods for pedigrees ignore the population information, while haplotyping
methods for unrelated individuals do not take into account the pedigree information.

The comparison study described in [12] motivated the development of the work pre-
sented in this paper. A constraint based model to deal with families and unrelated individu-
als is proposed. The new method is based in two well-known combinatorial approaches. The
Minimum Recombinant Haplotype Configuration (MRHC) approach is used to phase indi-
viduals organized in pedigrees, by minimizing the number ofrecombination events within
each pedigree. In general, a significant number of solutionscan be obtained using only the
minimum recombinant paradigm, especially when several families are considered. Thus, the
Haplotype Inference by Pure Parsimony (HIPP) approach is considered to choose a solution
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that uses the minimum number of distinct haplotypes, among all the minimum recombi-
nant solutions. The new method for haplotype inference, named PedRPoly, is shown to be
more accurate than the method traditionally used for inferring haplotypes on pedigrees us-
ing the minimum recombinant approach, performed by the PedPhase tool [11]. In addition,
this paper suggests some reductions on the size of the original integer programming MRHC
model.

The paper is organized as follows. The next section describes the haplotype inference
problem and overviews the MRHC and HIPP approaches. Section3 details the new pro-
posed model, PedRPoly, which combines MRHC and HIPP formulations. Afterwards ex-
perimental results comparing the accuracy of PedPhase and PedRPoly are presented and
discussed. Finally, the conclusions are presented in section 5.

2 Haplotype Inference

Single Nucleotide Polymorphisms (SNPs) are the most commonvariations between hu-
man beings, which occur when a nucleotide is mutated into another nucleotide at a single
DNA position. Haplotypes correspond to the set of closely linked SNPs, within a single
chromosome which tends to be inherited together. However, it is very expensive and time
consuming to determine experimentally the haplotypes. Instead, only genotypes, which cor-
respond to the conflated data of two haplotypes on homologouschromosomes are obtained.
The haplotype inference problem consists in determining the haplotypes which originate a
given genotype.

Considering that mutations are rare, we may assume that eachSNP can only have two
values. Each haplotype is therefore represented by a binarystring with sizem ∈ N, where
0 represents the wild type and 1 represents the mutant type. Each sitei of the haplotype
hi is represented byhi j (1 ≤ j ≤ m). Each genotype is represented by a string, with
sizem, over the alphabet{0, 1, 2}, and each site of the genotypegi is represented bygi j .
Each genotype is explained by two haplotypes. A genotypegi ∈ G is explained by a pair of
haplotypes (ha

i ,hb
i ) such that

gi j =

{

ha
i j if ha

i j = hb
i j

2 if ha
i j 6= hb

i j

. (1)

A genotype sitegi j with either value 0 or 1 is a homozygous site (the same allele is inherited
from both parents), whereas a site with value 2 is a heterozygous site (different alleles are
inherited from each parent).

Definition 1. Given a setG of n genotypes, each with sizem, the haplotype inference prob-
lem consists in finding a set of haplotypesH, such that each genotypegi ∈ G is explained
by two haplotypesha

i , hb
i ∈ H.

For each genotypeg with k heterozygous sites, there are2k−1 pairs of haplotypes that
can explaing. For example, genotypegi = 202 can be explained either by haplotypes
(000,101) or by haplotypes (001,100).

When the considered individuals are organized in pedigrees, additional information may
be associated with the haplotype inference problem. Considering the Mendelian law of in-
heritance, every site in a single haplotype is inherited from a single parent, assuming no
mutations within a pedigree. In a pedigree, an individual isa founderif he does not have
parents on the pedigree (and a non-founder if he has both parents on the pedigree). We as-
sume that haplotypeha is inherited from the father andhb is inherited from the mother, thus
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breaking a symmetry on the pairs of haplotypes for non-founder individuals. However, a re-
combination may occur, where the two haplotypes of a parent get shuffled and the shuffled
haplotype is passed on to the child. The result of a recombination event is arecombinant.

2.1 Minimum Recombinant Haplotype Configuration

Recombination events are rare in DNA regions with high linkage disequilibrium. There-
fore, most rule-based haplotype inference methods for pedigrees assume no recombination
among SNPs within each pedigree [19, 20, 13]. Although the assumption of no recombina-
tion is valid in many cases, this assumption can be violated even for some dense markers [9].
Therefore, the problem of minimizing the number of recombinants was suggested [6, 18].
The Minimum Recombinant Haplotype Configuration problem (MRHC) is a well-known
approach to haplotype inference in pedigrees. The MRHC problem is NP-hard [9, 10, 15].

Definition 2. The Minimum Recombinant Haplotype Configuration (MRHC) problem aims
at finding a haplotype inference solution for a pedigree which minimizes the number of
required recombinants [6, 18].

The PedPhase tool [9] implements an Integer Linear Programming (ILP) model for min-
imum recombinant with missing alleles.

2.2 Haplotype Inference by Pure Parsimony

The Haplotype Inference by Pure Parsimony (HIPP) approach aims at finding a minimum-
cardinality set of haplotypesH that can explain a given set of genotypesG. The idea of
searching for the solution with the smallest number of haplotypes is biologically motivated
by the fact that individuals from the same population have the same ancestors and mutations
do not occur often. Moreover, it is also well-known that the number of haplotypes in a
population is much smaller than the number of genotypes. It has been shown that the HIPP
problem is NP-hard [7].

Definition 3. The haplotype inference by pure parsimony (HIPP) problem consists in find-
ing a solution to the haplotype inference problem which minimizes the number of distinct
haplotypes [5].

RPoly [4] is a state-of-the-art HIPP solver implementing a 0-1 ILP model.

3 PedRPoly: Minimum Recombinant Maximum Parsimony

This section describes the PedRPoly model which aims at finding a haplotype inference so-
lution for sets of pedigrees from the same population. The PedRPoly model is a combination
of the MRHC PedPhase model [10] and the HIPP RPoly model [4].

Definition 4. The Minimum Recombinant Maximum Parsimony model aims at finding a
haplotype inference solution which minimizes the number ofrecombinants within pedigrees
and the number of distinct haplotypes used.
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Table 1.The PedRPoly Model: Minimum Recombinant Maximum Parsimony.

minimize: (2n + 1) ×
P

non−founder i

Pm−1
j=1 (r1

i j + r2
i j) +

Pn

i=1(u
a
i + ub

i)

subject to:
Equation Constraint Indexes

Mendelian Law of Inheritance rules (Table 2)

l = 1, 2

(2)
−rl

i j + gl
i j − gl

i j+1 ≤ 0
1 ≤ i ≤ n, i non-founder

−rl
i j − gl

i j + gl
i j+1 ≤ 0

1 ≤ j ≤ m
p, q ∈ {a, b}

(3) ¬(R ⇔ S) ⇒ xp q

i k (Table 3)
1 ≤ k < i ≤ n

1 < i ≤ n

(4)
X

k<i ; q∈{a,b}

xp q

i k − up
i ≤ 2i − 3

p ∈ {a, b}

Example 1.Consider two trios (father, mother and child), from two families A and B, with
the following genotypes:gfather

A = 102, gmother
A = 222, gchild

A = 202, g
father
B = 211,

gmother
B = 102 and gchild

B = 222. Family A has two possible MRHC solutions (with
0 recombinants). Solution 1:hfather

A = (100, 101), hmother
A = (001, 110), hchild

A =

(100, 001). Solution 2:hfather
A = (100, 101),hmother

A = (000, 111) andhchild
A = (101, 000).

Family B has only one possible MRHC solution (with 0 recombinants):hfather
B = (111, 011),

hmother
B = (100, 101) andhchild

B = (011, 100). Therefore, when considering both families,
there are two possible MRHC solutions. Nonetheless, takinginto consideration the num-
ber of haplotypes that each solution uses, solution 2 is preferred. Indeed, solution 1 uses
6 distinct haplotypes (100, 101, 001, 110, 111, 011) while solution 2 uses only 5 distinct
haplotypes (100, 101, 000, 111, 011).

PedRPoly is a 0-1 ILP model which combines the ILP PedPhase model and the RPoly
model. Constraints are detailed in Table 1. Following the RPoly model, the PedRPoly model
associates two haplotypes,ha

i and hb
i , with each genotypegi, and these haplotypes are

required to explaingi. Moreover, PedRPoly associates a variableti j with each heterozygous
sitegi j , such thatti j = 1 indicates thatha

i j = 1 andhb
i j = 0, whereasti j = 0 indicates

that ha
i j = 0 andhb

i j = 1. The values ofha
i andhb

i at homozygous sites are implicitly
assumed.

To analyze the recombination events within pedigrees, not only the paternal and ma-
ternal haplotypes are considered, but also the grand-paternal and grand-maternal origin of
each allele in the haplotypes. Following the PedPhase MRHC model, for each non-founder
individual i and sitej, two variables are defined:g1

i j andg2
i j . g1

i j = 0 (g1
i j = 1) represents

that the paternal allele of individuali at sitej comes from the paternal grandfather (grand-
mother). In a similar way,g2

i j = 0 (g2
i j = 1) represents that the maternal allele of individual

i at sitej comes from the maternal grandfather (grandmother). Constraints to ensure that the
Mendelian law of inheritance is satisfied are defined in Table2. Note that PedRPoly only
associates variables with heterozygous sites (inspired byRPoly), while PedPhase associates
variables with both homozygous and heterozygous sites. Thenew definition of variables as-
sociated with sites requires the redefinition of the constraints related with Mendelian laws.
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Table 2. Mendelian Law of Inheritance Rules (regarding variablesg1
i j ). The constraints involving

variablesg2
i j are defined similarly (1 ≤ i ≤ n, i non-founder,1 ≤ j ≤ m).f(i) corresponds to the

father ofi.

Condition Constraint
gi j = 0 ∧ gf(i) j = 2 tf(i) j ⇔ g1

i j

gi j = 0 ∧ gf(i) j =? (g1
i j ∨ ¬ha

f(i) j) ∧ (¬g1
i j ∨ ¬hb

f(i) j)

gi j = 1 ∧ gf(i) j = 2 tf(i) j ⇔ ¬g1
i j

gi j = 1 ∧ gf(i) j =? (g1
i j ∨ ha

f(i) j) ∧ (¬g1
i j ∨ hb

f(i) j)

gi j = 2 ∧ gf(i) j = 0 ¬ti j

gi j = 2 ∧ gf(i) j = 1 ti j

gi j = 2 ∧ gf(i) j = 2 (g1
i j ∨ ti j ∨ ¬tf(i) j) ∧ (g1

i j ∨ ¬ti j ∨ tf(i) j)∧
(¬g1

i j ∨ ti j ∨ tf(i) j) ∧ (¬g1
i j ∨ ¬ti j ∨ ¬tf(i) j)

gi j = 2 ∧ gf(i) j =? (g1
i j ∨ ti j ∨ ¬ha

f(i) j) ∧ (g1
i j ∨ ¬ti j ∨ ha

f(i) j)∧

(¬g1
i j ∨ ti j ∨ ¬hb

f(i) j) ∧ (¬g1
i j ∨ ¬ti j ∨ hb

f(i) j)

gi j =? ∧ gf(i) j = 0 ¬ha
i j

gi j =? ∧ gf(i) j = 1 ha
i j

gi j =? ∧ gf(i) j = 2 (g1
i j ∨ ha

i j ∨ ¬tf(i) j) ∧ (g1
i j ∨ ¬ha

i j ∨ tf(i) j)∧
(¬g1

i j ∨ ha
i j ∨ tf(i) j) ∧ (¬g1

i j ∨ ¬ha
i j ∨ ¬tf(i) j)

gi j =? ∧ gf(i) j =? (g1
i j ∨ ha

i j ∨ ¬ha
f(i) j) ∧ (g1

i j ∨ ¬ha
i j ∨ ha

f(i) j)∧

(¬g1
i j ∨ ha

i j ∨ ¬hb
f(i) j) ∧ (¬g1

i j ∨ ¬ha
i j ∨ ¬hb

f(i) j)

Table 3.Definition of predicates R and S, accordingly to index values.

Condition Constraint
gi j 6= 2 ∧ gk j = 2 R = (gi j ⇔ (q ⇔ a)) andS = tk j

gk j 6= 2 ∧ gi j = 2 R = (gk j ⇔ (p ⇔ a)) andS = ti j

gi j = 2 ∧ gk j = 2 R = (p ⇔ q) andS = (ti j ⇔ tk j)
gi j =? ∧ gk j /∈ {2, ?} R = tp

i j andS = gk j

gk j =? ∧ gi j /∈ {2, ?} R = tq

k j andS = gi j

gi j =? ∧ gk j = 2 R = (q ⇔ a) andS = (tp
i j ⇔ tk j)

gk j =? ∧ gi j = 2 R = (p ⇔ a) andS = (tq

k j ⇔ ti j)

gi j =? ∧ gk j =? R = tp
i j andS = tq

k j

Furthermore, variables are defined to count the number of recombinations. For each non-
founder individuali, variabler1

i j (r2
i j) is assigned value 1 if there was recombination at site

j, to create the paternal (maternal) haplotype of individuali. Thus,rl
i j = 1 if gl

i j 6= gl
i j+1,

for l = 1, 2 and1 ≤ j ≤ m − 1, which is ensured by constraints (2). Here, a simplification
to the original MRHC is considered. Actually, in the original model,rl

i j = 1 if and only
if gl

i j 6= gl
i j+1. Observe that an implication, instead of an equivalence, issufficient for

correctness and reduces in half the number of these constraints.
Once more following the RPoly model, letx

p q
i k , with p, q ∈ {a, b} and1 ≤ k < i ≤ n,

be 1 if haplotypep of genotypegi and haplotypeq of genotypegk are different. The condi-
tions on thexp q

i k variables are based on the values of variablesti j andtk j for heterozygous
sites, and are described by equations (3).

In addition, the model uses variablesu to denote when one of the haplotypes, associated
with a given genotype, is different from all previous haplotypes. Hence,up

i , with p ∈ {a, b}
and1 ≤ i ≤ n, is 1 if haplotypep of genotypegi is different from all previous haplotypes.
Then, the conditions on theup

i variables are based on the conditions for thex
p q
i k variables,

with 1 ≤ k < i andq ∈ {a, b} and correspond to equation (4).
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Fig. 1. Comparison of PedRPoly and PedPhase error rates

Finally, the cost function minimizes the number of recombination events, which is given
by the sum of variablesr, and the number of distinct haplotypes used on the solution,which
is given by the sum of variablesu. Nonetheless a larger weight is given to the number
of recombinants, because we want to guarantee that a minimumrecombinant solution is
chosen. (Note that2n is a trivial upper bound on the number of haplotypes on the solution.)

4 Experimental Results

The experimental data was simulated using the SimPed program [8]. SimPed generates
haplotypes for families, given the pedigree structure, as well as the haplotypes and their
frequencies for founders. Three different sets of haplotypes were considered. These sets of
haplotypes are real data for which haplotypes have been experimentally identified [1, 17],
and correspond to the A, B and C data sets used in [2]. Haplotypes in set A have 9 SNPs,
haplotypes in set B have 5 SNPs and haplotypes in set C have 17 SNPs. Three different
pedigree structures, taken from [10], were considered: pedigree 1 with 15 members, pedi-
gree 2 with 29 individuals and pedigree 3 with 17 individuals(with a mating loop). Each
simulated instance consists of 10 replicates of the given pedigree, simulating 10 different
families from the same population. Recombination events between alleles were considered
with probabilities 0.1%, 0.5% and 1%. Three variations on missing rates were considered:
1%, 10% and 20%. For each parameters combination, 5 independent replicates were se-
lected, resulting in a total of 405 (= 34 × 5) input trials. MiniSat+ [3] was used as a 0-1 ILP
tool to solve the PedRPoly model.

In order to analyze the accuracy of the methods, two different errors were considered.
Theswitch error ratemeasures the percentage of possible switches in haplotype orientation,
used to recover the correct phase in an individual [14]. Missing alleles are not considered for
computing the switch error. Themissing error rateis the percentage of incorrectly inferred
missing data [16].

Figure 1 presents two scatter plots comparing the switch error and missing error rates for
PedRPoly and PedPhase. Each problem instance corresponds to a point in the plot, where
thex-axis represents the error rate of the PedRPoly approach andthey-axis represents the
error rate of the ILP PedPhase approach.

The switch error rate of the methods is compared in the left plot of Figure 1. The switch
error of PedRPoly is smaller than the switch error of PedPhase for 55.3% of the problem
instances. The switch error of PedRPoly is larger than the switch error of PedPhase for



Haplotype Inference Combining Pedigrees and Unrelated Individuals 7

Table 4. Switch Error Rate and Missing Error Rate for PedRPoly and PedPhase in sets of instances
with different parameters (n is the number of genotypes of the instance, with n=10 · f where f is the
size of each pedigree, and m is the number of sites of each genotype).

Error Rate

Set Switch Error Rate Missing Error Rate
PedRPoly PedPhasePedRPoly PedPhase

Missing Rate 1% 0.0115 0.0143 0.0361 0.0411
10% 0.0190 0.0232 0.0382 0.0488
20% 0.0304 0.0437 0.0456 0.0625

Recombination Rate 0.1% 0.0157 0.0221 0.0393 0.0472
0.5% 0.0212 0.0267 0.0398 0.0506
1% 0.0240 0.0324 0.0407 0.0546

Pedigree Ped1 (n=150)0.0194 0.0245 0.0428 0.0469
Ped2 (n=290) 0.0199 0.0284 0.0355 0.0471
Ped3 (n=170) 0.0217 0.0283 0.0415 0.0584

Population A (m=9) 0.0116 0.0210 0.0428 0.0469
B (m=5) 0.0450 0.0482 0.0355 0.0471
C (m=17) 0.0044 0.0120 0.0415 0.0584

16.8% of the problem instances, and for the remaining 27.9% the error is the same for both
methods.

With respect to the missing error rate (right plot of Figure 1), it is clear that PedRPoly
is more accurate than PedPhase. Indeed, the missing error ofPedRPoly is smaller than
the missing error of PedPhase for 64.7% of the problem instances. The missing error of
PedRPoly is larger than the missing error of PedPhase for 18%of the problem instances,
and for the remaining 17.3% instances the error is the same for both methods.

Table 4 presents the accuracy results organized by parameter value. Each value is the av-
erage of the missing error for the 135 instances generated with the correspondent parameter
value. We conclude that PedRPoly has a smaller error rate on every class of instances.

Finally, we have compared the number of distinct haplotypesin the PedRPoly solution
and the PedPhase solution with the number of haplotypes in the real solution. PedRPoly
has the same number of haplotypes than the real solution for 64.7% of the instances and
for 96.8% of the instances the number of haplotypes in the PedRPoly solution differs in
less than 3 haplotypes from the number in the real solution. PedPhase solutions have less
similarity with the real solutions with respect to the number of distinct haplotypes. For
23.7% of the instances, the number of haplotypes in the PedPhase solution is equal to the
number of haplotypes in the real solution, and for 50% of the instances, the number of
haplotypes in the PedRPoly solution differs in more than 2 haplotypes from the real solution.

Regarding the efficiency of PedRPoly and PedPhase methods, while PedPhase is able
to solve each instance in a few seconds, PedRPoly can take a few hours. Improving the
efficiency of PedRPoly is the main short term goal.

5 Conclusions and Future Work

This paper presents a new method for inferring haplotypes from genotype data of families
from the same population. The proposed method (called PedRPoly) integrates the minimum
recombinant and the pure parsimony principles, two relevant constraint based haplotyping
approaches. Thus, PedRPoly can take into account both the family information and the
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population information. Experimental results show that PedRPoly is actually more accurate
than PedPhase which only uses the minimum recombinant principle.

Future work directions include improving the efficiency of the PedRPoly method and
testing the method in larger and real data sets.
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