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Abstract. Haplotype inference is a crucial topic in genetic studied also repre-
sents a challenging computational problem. A significamiiper of combinatorial ap-
proaches tackle the haplotype inference problem eithguddigrees or for unrelated
individuals. This work integrates two relevant and welbim constraint based haplo-
typing approaches. The Minimum Recombinant Haplotypingfigaration (MRHC)
problem targets the haplotyping solution which minimizestumber of recombinant
events within a pedigree. MRHC only takes into consideretiie family information.
In contrast, the Haplotype Inference by Pure Parsimony Rhifi?oblem aims at find-
ing a solution which minimizes the number of distinct haptats. The HIPP approach
is adequate for phasing unrelated individuals from the spapilation. This paper
proposes a method for inferring haplotypes for individuzfisthe same population,
although organized in different families, thus combinirgtoMRHC and HIPP ap-
proaches. This new method can take into account family inédion and population
information, both important in haplotype inference. Expemtal results show that
the proposed approach is more accurate, both in terms aftseitor rate and miss-
ing error rate, than the MRHC approach (performed by the Rasi#tool), on sets of
families from the same population.

1 Introduction

Genetic association studies with phenotypic variatiorsoaty possible with a deep knowl-
edge of the genetic differences between individuals. A waportant and challenging task
to understand genetic variations consists of inferrinddtgpes from genotypes.

Constraint based methods for haplotype inference have &le®nn to be a practical
and relevant alternative to statistical approaches, efitiigohasing pedigrees [9, 11] or un-
related individuals [4]. Nonetheless, a study comparirgtthplotype inference methods
using pedigrees and unrelated individuals [12] points bat & new method which takes
into consideration both pedigree and population infororais necessary. Indeed, existing
haplotyping methods for pedigrees ignore the populatidorination, while haplotyping
methods for unrelated individuals do not take into accon@ftedigree information.

The comparison study described in [12] motivated the deraknt of the work pre-
sented in this paper. A constraint based model to deal wittilitss and unrelated individu-
als is proposed. The new method is based in two well-knowrbiaatorial approaches. The
Minimum Recombinant Haplotype Configuration (MRHC) apmio#s used to phase indi-
viduals organized in pedigrees, by minimizing the numberesbmbination events within
each pedigree. In general, a significant number of soluttansbe obtained using only the
minimum recombinant paradigm, especially when severailliesrare considered. Thus, the
Haplotype Inference by Pure Parsimony (HIPP) approachrisidered to choose a solution
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that uses the minimum number of distinct haplotypes, amdingp@ minimum recombi-
nant solutions. The new method for haplotype inference athRedRPoly, is shown to be
more accurate than the method traditionally used for iifgrnaplotypes on pedigrees us-
ing the minimum recombinant approach, performed by the Rasétool [11]. In addition,
this paper suggests some reductions on the size of the arigteger programming MRHC
model.

The paper is organized as follows. The next section descthee haplotype inference
problem and overviews the MRHC and HIPP approaches. Se8tuetails the new pro-
posed model, PedRPoly, which combines MRHC and HIPP foriounls. Afterwards ex-
perimental results comparing the accuracy of PedPhase edigFH®ly are presented and
discussed. Finally, the conclusions are presented inosebti

2 Haplotype Inference

Single Nucleotide Polymorphisms (SNPs) are the most comvaeiations between hu-
man beings, which occur when a nucleotide is mutated intéhe@namucleotide at a single
DNA position. Haplotypes correspond to the set of closatkdd SNPs, within a single
chromosome which tends to be inherited together. Howetisr very expensive and time
consuming to determine experimentally the haplotypese&ts only genotypes, which cor-
respond to the conflated data of two haplotypes on homologmesnosomes are obtained.
The haplotype inference problem consists in determiniegidplotypes which originate a
given genotype.

Considering that mutations are rare, we may assume thatS¥dEhcan only have two
values. Each haplotype is therefore represented by a batidng with sizem € N, where
0 represents the wild type and 1 represents the mutant tygmh &tei of the haplotype
h; is represented by; ; (1 < j < m). Each genotype is represented by a string, with
sizem, over the alphabeft0, 1, 2}, and each site of the genotypegis represented by, ;.
Each genotype is explained by two haplotypes. A genotyged is explained by a pair of
haplotypesk¢,h?) such that

he. if he. = hb.
L= i ¥ i
9i; {2 it he £ hb @)

A genotype sitgy; ; with either value 0 or 1 is a homozygous site (the same abétehierited
from both parents), whereas a site with value 2 is a hetemzygite (different alleles are
inherited from each parent).

Definition 1. Given a set; of n genotypes, each with size, the haplotype inference prob-
lem consists in finding a set of haplotyggssuch that each genotyge € G is explained
by two haplotypes?, h? € H.

For each genotype with k heterozygous sites, there &% ! pairs of haplotypes that
can explaing. For example, genotypg, = 202 can be explained either by haplotypes
(000,101) or by haplotypes (001,100).

When the considered individuals are organized in pedigesigitional information may
be associated with the haplotype inference problem. Cerisiglthe Mendelian law of in-
heritance, every site in a single haplotype is inheritednfteo single parent, assuming no
mutations within a pedigree. In a pedigree, an individua fsunderif he does not have
parents on the pedigree (and a non-founder if he has bothtsaye the pedigree). We as-
sume that haplotypk® is inherited from the father arfef is inherited from the mother, thus
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breaking a symmetry on the pairs of haplotypes for non-feaiividuals. However, a re-
combination may occur, where the two haplotypes of a parensiguffled and the shuffled
haplotype is passed on to the child. The result of a recortibimavent is aecombinant

2.1 Minimum Recombinant Haplotype Configuration

Recombination events are rare in DNA regions with high lgekaisequilibrium. There-
fore, most rule-based haplotype inference methods forgpees assume no recombination
among SNPs within each pedigree [19, 20, 13]. Although tkeragtion of no recombina-
tionis valid in many cases, this assumption can be violated éor some dense markers [9].
Therefore, the problem of minimizing the number of recorabits was suggested [6, 18].
The Minimum Recombinant Haplotype Configuration problenRINC) is a well-known
approach to haplotype inference in pedigrees. The MRHClenoks NP-hard [9, 10, 15].

Definition 2. The Minimum Recombinant Haplotype Configuration (MRHCpEm aims
at finding a haplotype inference solution for a pedigree Whiginimizes the number of
required recombinants [6, 18].

The PedPhase tool [9] implements an Integer Linear Progiagfii.P) model for min-
imum recombinant with missing alleles.

2.2 Haplotype Inference by Pure Parsimony

The Haplotype Inference by Pure Parsimony (HIPP) approges at finding a minimum-
cardinality set of haplotype& that can explain a given set of genotyggsThe idea of
searching for the solution with the smallest number of higjples is biologically motivated
by the fact that individuals from the same population haeestime ancestors and mutations
do not occur often. Moreover, it is also well-known that thenber of haplotypes in a
population is much smaller than the number of genotypesdtiteen shown that the HIPP
problem is NP-hard [7].

Definition 3. The haplotype inference by pure parsimony (HIPP) problensisis in find-
ing a solution to the haplotype inference problem which minés the number of distinct
haplotypes [5].

RPoly [4] is a state-of-the-art HIPP solver implementing A IQP model.

3 PedRPoly: Minimum Recombinant Maximum Parsimony

This section describes the PedRPoly model which aims anfjraihaplotype inference so-
lution for sets of pedigrees from the same population. TiEP®ly model is a combination
of the MRHC PedPhase model [10] and the HIPP RPoly model [4].

Definition 4. The Minimum Recombinant Maximum Parsimony model aims anh§ral
haplotype inference solution which minimizes the numberafmbinants within pedigrees
and the number of distinct haplotypes used.
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Table 1. The PedRPoly Model: Minimum Recombinant Maximum Parsimony

minimize: (2n + 1) X Znonffuunder i 23”:711 (rilj + ri2j) + Z:Lzl (u? + ui))

subject to:
Equation Constraint Indexes
Mendelian Law of Inheritance rules (Tablg 2)
=1, 2
g —gl <0
2) Tig 95 G = 1 < i < n, i non-founde
! ! !
—Tij —Gij T 9ij+1 <0 1<j<m
y p,q € {a,b}
(3 (R & S) =z (Table 3) l<k<i<n
1l<i1<n
rq _ P -
(4) Z xld —ul <2i-3 pe{a,b}
k<i;g€{a,b}

Example 1.Consider two trios (father, mother and child), from two fes A and B, with
the following genotypesy """ = 102, g7pother = 222, g5hild — 202, gl**"" = 211,
gmether = 102 and gl = 222. Family A has two possible MRHC solutions (with
0 recombinants). Solution /""" = (100,101), h7p°ther = (001,110), hePid =
(100,001). Solution 2:2%*"*" = (100, 101), h7pother = (000, 111) andhile = (101, 000).
Family B has only one possible MRHC solution (with O reconalsits):h /""" = (111,011),
hmether — (100, 101) andhélid = (011, 100). Therefore, when considering both families,
there are two possible MRHC solutions. Nonetheless, takit@yconsideration the num-
ber of haplotypes that each solution uses, solution 2 isepred. Indeed, solution 1 uses
6 distinct haplotypes100, 101,001,110,111,011) while solution 2 uses only 5 distinct
haplotypes100, 101,000,111, 011).

PedRPoly is a 0-1 ILP model which combines the ILP PedPhaskehamd the RPoly
model. Constraints are detailed in Table 1. Following thelRBodel, the PedRPoly model
associates two haplotypefs; and h?, with each genotype;, and these haplotypes are
required to explaim;. Moreover, PedRPoly associates a variapjavith each heterozygous
site g; j, such that; ; = 1 indicates thab;-’j =1 andhﬁ?j = 0, whereag; ; = 0 indicates
that hi; =0 and hﬁ?j = 1. The values of¢ and hﬁ? at homozygous sites are implicitly
assumed.

To analyze the recombination events within pedigrees, nbt the paternal and ma-
ternal haplotypes are considered, but also the grandradtend grand-maternal origin of
each allele in the haplotypes. Following the PedPhase MRId@eatfor each non-founder
individuali and sitej, two variables are defined; ; andg?,. g;; = 0 (¢9;; = 1) represents
that the paternal allele of individuaht sitej comes from the paternal grandfather (grand-
mother). In a similar wa;gfj =0 (gfj = 1) represents that the maternal allele of individual
1 at sitej comes from the maternal grandfather (grandmother). Caingsrto ensure that the
Mendelian law of inheritance is satisfied are defined in T@bldote that PedRPoly only
associates variables with heterozygous sites (inspiréHnly), while PedPhase associates
variables with both homozygous and heterozygous sitesn&welefinition of variables as-
sociated with sites requires the redefinition of the coindtisaelated with Mendelian laws.
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Table 2. Mendelian Law of Inheritance Rules (regarding variatyéﬁ). The constraints involving
variabIengj are defined similarlyl( < i < n, i non-founder,l < j < m).f (i) corresponds to the
father ofi.

Condition Constraint
915 =0Ngri); =2 i tf(i)j‘i)gzij .
9ij =0Agruy,; =2 (gijv_'h?(i)j)/\(_‘gi{\/_‘hf(i)j)
9i; =1Ngriy; =2 i tf(z‘)j@ﬁglij .
9ii =1Ngriy; =7 (9i5 vV h5ay ) AN (2gii V Ry 5)
9i; =2Ngs0); =0 i
9ij =2Ngsi; =1 lij

9ij =2Ngraiy; =2 (93{ VitV sy ) A (93{ Vi Vi) A
(ﬁlgz‘j Vitij Vi) A (ﬂ%i]- V oti gV tp )
a a

Gij =2Ngpy; =7 (gi{' VitijV ﬁhfb(z‘)j) NE I/ “tig V hf(igj)/\
(mgij Vti; ¥V ohy ) A(2gi V —tii Vb ;)
9ij =" Ngrwy; =0 —hi;
9ij =TNgrwy; =1 hi;

T T
9ii =TNGriy; =2 (gi{ v h?g V Sty ) A (gi{ Vv ﬁh?g Vg )N
(ﬁgw‘ VhiVitra ) A (ﬁglij V ohE; vV Sty 5)
9i3 =T N9pays =) (9ig VGV Sy ) A (gig V ORE Y R )N
(gij VRV DR ) A(2giy V ohE Y SR ;)

Table 3.Definition of predicates R and S, accordingly to index values

Condition Constraint

9ij #2Ngk; =2 [R=(gi; & (¢ a))andS =ty

gej #2Ngij =2 |R=(gr; & (p&a))andS =ti;

Gij =2Ngr; =2 R:(pc)q)andS:(tij@tkj)
gij:?/\gkj¢{2,?} R:tfjandS:gkj
gkj:?/\gij¢{27?} R:tgjandS:gU

gi; ='Ngr; =2 |R (q@a)andS:(tfjﬁtkj)

g =TNgij; =2 R:(pc)a)andS:(tzj@tij)

gij:?/\gkj:? R:tfjandS:th

Furthermore, variables are defined to count the number ofmbmations. For each non-
founder individuat, variablerilj (rfj) is assigned value 1 if there was recombination at site
j. to create the paternal (maternal) haplotype of individughus,r! ; = 1if g/ ; # g},
fori =1,2andl < j <m — 1, which is ensured by constraints (2). Here, a simplification
to the original MRHC is considered. Actually, in the oriinmaodeI,rﬁj = 1 if and only
if gﬁj #+ gﬁjﬂ. Observe that an implication, instead of an equivalenceufBcient for
correctness and reduces in half the number of these cartstrai

Once more following the RPoly model, lef !, with p,q € {a,b} and1 < k < i < n,
be 1 if haplotype of genotypey; and haplotype of genotypey, are different. The condi-
tions on therf,g variables are based on the values of variablesandt,, ; for heterozygous
sites, and are described by equations (3).

In addition, the model uses variable$o denote when one of the haplotypes, associated
with a given genotype, is different from all previous hapjms. Hencey?, with p € {a, b}
andl < i < n,is 1 if haplotypep of genotypey; is different from all previous haplotypes.
Then, the conditions on thé’ variables are based on the conditions for #fj¢ variables,
with 1 < k < i andq € {a, b} and correspond to equation (4).
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Fig. 1. Comparison of PedRPoly and PedPhase error rates

Finally, the cost function minimizes the number of reconalion events, which is given
by the sum of variables and the number of distinct haplotypes used on the solutibigh
is given by the sum of variables. Nonetheless a larger weight is given to the number
of recombinants, because we want to guarantee that a minimmocombinant solution is
chosen. (Note thatn is a trivial upper bound on the number of haplotypes on thet&ol.)

4 Experimental Results

The experimental data was simulated using the SimPed prof8h SimPed generates
haplotypes for families, given the pedigree structure, ai as the haplotypes and their
frequencies for founders. Three different sets of haplesypwere considered. These sets of
haplotypes are real data for which haplotypes have beerriexgetally identified [1, 17],
and correspond to the A, B and C data sets used in [2]. Hapstypset A have 9 SNPs,
haplotypes in set B have 5 SNPs and haplotypes in set C hav&lRg. S hree different
pedigree structures, taken from [10], were consideredigpee 1 with 15 members, pedi-
gree 2 with 29 individuals and pedigree 3 with 17 individu@ith a mating loop). Each
simulated instance consists of 10 replicates of the giveligpee, simulating 10 different
families from the same population. Recombination eventiwden alleles were considered
with probabilities 0.1%, 0.5% and 1%. Three variations ogginig rates were considered:
1%, 10% and 20%. For each parameters combination, 5 indepenepblicates were se-
lected, resulting in a total of 405+(3* x 5) input trials. MiniSat+ [3] was used as a 0-1 ILP
tool to solve the PedRPoly model.

In order to analyze the accuracy of the methods, two diffeeerors were considered.
Theswitch error ratemeasures the percentage of possible switches in haplotigration,
used to recover the correct phase in an individual [14]. Mgsalleles are not considered for
computing the switch error. Thaissing error ratds the percentage of incorrectly inferred
missing data [16].

Figure 1 presents two scatter plots comparing the switar and missing error rates for
PedRPoly and PedPhase. Each problem instance corresjpong®int in the plot, where
the z-axis represents the error rate of the PedRPoly approacthandaxis represents the
error rate of the ILP PedPhase approach.

The switch error rate of the methods is compared in the leftqfl Figure 1. The switch
error of PedRPoly is smaller than the switch error of Ped@li@s55.3% of the problem
instances. The switch error of PedRPoly is larger than th&ckverror of PedPhase for
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Table 4. Switch Error Rate and Missing Error Rate for PedRPoly andPRede in sets of instances
with different parameters (n is the number of genotypes @filstance, with n¥0 - f where f is the
size of each pedigree, and m is the number of sites of eachygen)o

| | Error Rate |
Set Switch Error Rate | Missing Error Rate
PedRPoly PedPhas®edRPoly PedPhase
Missing Rate 1% 0.0115 0.0143] 0.0361  0.0411
10% 0.0190 0.0232| 0.0382  0.0488
20% 0.0304  0.0437| 0.0456  0.0625
Recombination Rate 0.1% 0.0157  0.0221] 0.0393  0.0472
0.5% 0.0212  0.0267| 0.0398  0.0506
1% 0.0240 0.0324| 0.0407 0.0546
Pedigree Pedl (n=150)0.0194  0.0245| 0.0428  0.0469
Ped2 (n=290) 0.0199  0.0284| 0.0355 0.0471
Ped3 (n=17Q0) 0.0217  0.0283| 0.0415 0.0584
Population A (m=9) 0.0116  0.0210| 0.0428  0.0469
B (m=5) 0.0450 0.0482| 0.0355 0.0471
C (m=17) 0.0044  0.0120| 0.0415 0.0584

16.8% of the problem instances, and for the remaining 27t&&tror is the same for both
methods.

With respect to the missing error rate (right plot of Figujeitlis clear that PedRPoly
is more accurate than PedPhase. Indeed, the missing erfediRRPoly is smaller than
the missing error of PedPhase for 64.7% of the problem ins&rThe missing error of
PedRPoly is larger than the missing error of PedPhase for df3%e problem instances,
and for the remaining 17.3% instances the error is the santefo methods.

Table 4 presents the accuracy results organized by paravaéie. Each value is the av-
erage of the missing error for the 135 instances generatédivé correspondent parameter
value. We conclude that PedRPoly has a smaller error rateery elass of instances.

Finally, we have compared the number of distinct haplotypeéke PedRPoly solution
and the PedPhase solution with the number of haplotypeseimetal solution. PedRPoly
has the same number of haplotypes than the real solutiordf@®® of the instances and
for 96.8% of the instances the number of haplotypes in thdRPet) solution differs in
less than 3 haplotypes from the number in the real solutiedPRase solutions have less
similarity with the real solutions with respect to the numlbé distinct haplotypes. For
23.7% of the instances, the number of haplotypes in the RestP$plution is equal to the
number of haplotypes in the real solution, and for 50% of tisances, the number of
haplotypes in the PedRPoly solution differs in more than@dtsipes from the real solution.

Regarding the efficiency of PedRPoly and PedPhase methils, RedPhase is able
to solve each instance in a few seconds, PedRPoly can take hofgrs. Improving the
efficiency of PedRPoly is the main short term goal.

5 Conclusions and Future Work

This paper presents a new method for inferring haplotypms fyenotype data of families
from the same population. The proposed method (called PelgilRRtegrates the minimum
recombinant and the pure parsimony principles, two releganstraint based haplotyping
approaches. Thus, PedRPoly can take into account both mhi¢y fanformation and the
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population information. Experimental results show that®@oly is actually more accurate
than PedPhase which only uses the minimum recombinantiplénc

Future work directions include improving the efficiency bétPedRPoly method and

testing the method in larger and real data sets.
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