Towards an Automated Annotation of CRISPR-cas systems
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Automated annotationof CRISPR-cas loci in newly sequenced genomes is valuable
both for general purposes of comparative genomics of archaea and bacteria, and
for the progress of CRISPR research.

For a comprehensive analysis, several tasks have to be performed, among which
the most important are:

1) the correct prediction of repeat orientation [CRISPRstrand]

2) a characterization of the repeats Iin terms of sequence and structure to infer
repeat evolution [CRISPRmap]

3) annotation of the associated loci subtype according to the composition of cas
genes.

For the annotation of loci subtypes we present a solution that relies on a novel
similarity notion for the interference modules. Loci annotation is achieved by
nearest neighbor classification, which yields highly consistent results with respect
to the current subtype classification.
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CRISPRstrand: predicting repeat orientations at CRISPR locl

Although existing bioinformatics tools can recognize CRISPR loci by their
characteristic repeat-spacer architecture, they generally output CRISPR arrays of
ambiguous orientation and thus do not determine the strand from which crRNAs
are processed.

Knowledge of the correct orientation is crucial for many tasks, including the
classification of CRISPR conservation, the detection of leader regions, the
Identification of target sites (protospacers) on invading genetic elements and the
characterization of protospacer-adjacent motifs.
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Graph encoding the consensus repeat sequence. The consensus nucleotide information is
represented as a path graph, and additional informationis modelled as a chain of additional
vertices: block identifiers, mutation and relative position in the block.
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CRISPRmap: an automated classification of repeat conservation
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Highlighting the advantage of independent clustering approaches. (A) CRISPRs in the largest sequence family, F1, are mostly
unstructured; however, for 50 CRISPRs also a conserved structure motif, M10, was identified.
We predicted CRISPR loci in all publically available genome This indicates that subsets of conserved families can bestructured. F1 contains the conserved 50 tag, marked with the
sequences using the CRT tool and CRISPRfinder. magenta box. (B) Structure motif M28 shows no sequence conservation, but a conserved structure (base pairs are
In total, we analysed 4500 CRISPR loci in 4899 genomes: highlighted in yellow). The many compensatory base pairs are marked in the alignment with squares.
4590 bacteria, 309 archaea This structure has been verified via mutational analyses. Potential cleavage sites are indicated as observed in the literature
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