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ABSTRACT

INFO-RNA is a new web server for designing RNA
sequences that fold into a user given secondary
structure. Furthermore, constraints on the sequence
can be specified, e.g. one can restrict sequence
positions to a fixed nucleotide or to a set of
nucleotides. Moreover, the user can allow violations
of the constraints at some positions, which can be
advantageous in complicated cases.

The INFO-RNA web server allows biologists to
design RNA sequences in an automatic manner. It is
clearly and intuitively arranged and easy to use. The
procedure is fast, as most applications are com-
pleted within seconds and it proceeds better and
faster than other existing tools. The INFO-RNA
web server is freely available at http://www.bioinf.
uni-freiburg.de/Software/INFO-RNA/

INTRODUCTION

The function of RNA molecules often depends on both
the primary sequence and the secondary structure. RNAs
are involved in translation (tRNA, rRNA), splicing
(snRNA), processing of other RNAs (snoRNA,
RNAseP) and regulatory processes (miRNA, siRNA)
(1). Furthermore, parts of mRNAs can adopt structures
that regulate their own translation (SECIS (2,3), IRE (4)).
Since prediction and experimental determination of 3D
RNA structures remain difficult, much work focuses on
problems associated with its secondary structure, which is
the set of base pairs. The problem of predicting the
secondary structure of an RNA is called the ‘RNA folding
problem’. Existing computational approaches are based
on a thermodynamic model that gives a free energy value
for each secondary structure (5). The structure with the
lowest free energy [called the ‘minimum free energy (mfe)
structure’] is expected to be the most stable one.

Here, we consider the ‘inverse RNA folding problem
satisfying sequence constraints’, which is the design of
RNA sequences that fold into a desired structure and

fulfill some given constraints on the primary sequence.
These constraints can restrict certain positions to fixed
nucleotides or to a fixed set of nucleotides. The INFO-
RNA web server is applicable to the design of RNA
elements that include conserved nucleotides, which are
essential for binding of proteins.

METHODS AND USAGE

The INFO-RNA server uses a new algorithm for the
INverse FOlding of RNA that involves two steps. The
first step contains a new design method for good initial
sequences. It is followed by an improved stochastic local
search. Both steps are described shortly in the following
and more in detail (6).

The initializing step

The input of the algorithm consists of the target structure.
During the first step of INFO-RNA, a dynamic program-
ming approach designs an RNA sequence that adopts the
lowest energy a sequence can have when folding into the
target structure. However, this sequence is not guaranteed
to fold into the target structure since this sequence can
have another mfe structure. Therefore, the resulting
sequence is processed further in a second step.

The local search step

To improve the quality of the sequence generated in the
first step, local sequence mutations are made iteratively.
In INFO-RNA, this is done by a ‘stochastic local search’
(SLS) that minimizes the structure distance between the
mfe structure of the designed sequence and the target
structure. Here, sequence neighbors are tested either in a
random order or in an order that depends on the energy
difference between the current sequence and the neighbor
sequence when folding into the target structure. The
higher the difference is, the earlier the mutation is
examined. Optionally, the probability of folding into the
wanted structure can be optimized as well.
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Novel extensions of the algorithm

In an extension to (6), the INFO-RNA web server can
handle a set of user-given constraints on the primary
sequence. These constraints have to be fulfilled during
both steps of the algorithm. That means, after finishing
the initializing step, we get a sequence that adopts the
target structure with the lowest energy that is possible if
the constraints are fulfilled. During the local search step,
only mutations that coincide with the constraints are
valid.
If the constraints on the sequence are not strictly fixed,

the user can specify some positions where violations of the
constraints are allowed. Furthermore, the user can restrict
the maximal number of constraints that are violated in the
final sequence (Vmax). This might be useful if one allows
violations of two different constraints but wants at most
only one of these violations in the designed RNA
sequence.
Finally, the INFO-RNA server outputs the best-found

RNA sequence satisfying the sequence constraints with at
most violations.

Usage

The INFO-RNA web server is clearly and intuitively
arranged. In order to obtain an RNA sequence folding
into a target structure and satisfying some sequence
constraints, both (structure and sequence constraints)
have to be given. The structure has to be given in bracket
notation. Here, a base pair between bases i and j is
represented by a ‘(’at the i-th position and a ‘)’ at position
j. Unpaired bases are represented by dots. The sequence
constraints have to be entered in IUPAC symbols, where
e.g. restricting a position to Y means that a C or a U is
allowed there. In addition, the user can choose some
positions where the constraints are allowed to be violated
during the local search. Besides, the maximal number of
positions where the constraints are allowed to be violated
in the final sequence can be specified. Furthermore, the
user can fix some parameters used during the stochastic
local search, e.g. the search strategy of either only
minimizing the structure distance or additionally max-
imizing the folding probability as well as the search
order of the sequence positions. Finally, the user
can choose whether the results are shown on the web
page or send via email. For all options, a comprehensive
help and detailed examples are given. Figure 1 shows the
output of a typical computation. First, the input data are
summarized. Below, the designed sequence is shown
including information about its mfe structure, its free
energy and its folding probability. Additionally, the user
can download the results in FASTA, CT and RNAML
format.

RESULTS AND APPLICATION

The INFO-RNA web server allows biologists to design
RNA sequences, which fold into a given structure, in an
automatic manner. The procedure is fast, as most
applications are completed within seconds. As shown in

(6), INFO-RNA (not considering sequence constraints)
proceeds better and faster than other existing tools.
Artificial as well as biological test sets were analyzed.
The biological test sets divide into computationally
predicted structures for known RNA sequences and
structures from the biological literature. INFO-RNA
turned out to be the algorithm having the highest
succession rates as well as the lowest computation times
for all test sets. Additional stability tests showed that the
designed sequences are more stable than the biological
ones.

The novel extension of INFO-RNA including
sequence constraints allows the design of cis-acting
mRNA elements such as the ‘iron responsive element’
(IRE) and the ‘polyadenylation inhibition element’ (PIE).
Both elements have conserved sequence positions
in loops. The IRE is essential for the expression of
proteins that are involved in the iron metabolism (7).
It consists of a stem-loop structure, and the first five
nucleotides in the hairpin loop as well as the
bulged nucleotides were found to be essential for binding
of iron-regulatory proteins. The PIE contains two
binding sites for U1A proteins (8). It consists of a
stem structure with two asymmetric internal loops that
serve as U1A-binding sites (Figure 2). Using the INFO-
RNA web server, we designed artificial IREs and PIEs
having a much higher folding probability compared
to natural elements. While designed sequences for the
IRE having a single C bulge fold into the target
structure with an average probability of 88%, natural
sequences do so only with an average probability of
15%. Regarding IREs having an interior loop with left
size 3 and right size 1, the results are similar.
Furthermore, the average probability of the designed
PIE sequences folding into the target structure is more
than 20 times higher than the probability of the natural
PIE sequences (Supplementary Figure 1). Besides,
all IREs designed by the INFO-RNA web server
adopt the wanted structure as its mfe structure
whereas only a small fraction of the natural ones does
(Supplementary Figure 2).

Furthermore, we demonstrated the usability of the
INFO-RNA web server by designing artificial microRNA
(miRNA) precursors that are as stable as possible. To this
end, artificial miRNA sequences published in (9) were
used. Applying the INFO-RNA web server, we designed
precursors of these artificial miRNAs as well as of the
natural miRNA. All of the designed sequences have a free
energy that is at least twice as low as the free energy of the
natural precursor sequences. On average, their probability
of folding into the target miRNA precursor structure is
five times as high as the folding probability of the natural
precursor sequences. For more details see Supplementary
Table 1.

Other potential application areas are the design of
ribozymes and riboswitches (10), which may be used in
research and medicine, and the design of non-coding
RNAs, which are involved in a large variety of processes,
e.g. gene regulation, chromosome replication and RNA
modification (11).
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DISCUSSION

We have shown that the INFO-RNA web server is a very
fast and successful tool to design RNA sequences, which
fold into a given structure and fulfill some sequence
constraints. The core of the algorithm was introduced in
(6). There, we already showed that INFO-RNA (not
considering sequence constraints) proceeds better and
faster than other existing tools. Here, we have

demonstrated that the INFO-RNA web server, which
can handle additional constraints on the primary
sequence, also performs well and fast.
Most of the sequences designed by the INFO-RNA web

server are highly stable and have very low free energy.
This might result from the high GC content that most of
the sequences show since G–C base pairs are energetically
most favorable. It is not clear whether such highly stable

Input:

General Parameters:

RNA secondary structure: 

Sequence constraints:

Maximal number of violations:

5′−NNNNNUGCNNNNNCAGUGHNNNNNCNNNNN−3′

5′−000001100000000000100000000000−3′

2

Parameters of the Stochastic Local Search:

Objective function: 

Probability of accepting bad mutations: 

Presort candidates for mutation:  

mfe

0.1

yes

Results:

1. Designed Sequence

Target structure: 

5′−GGGCCUUCGCCCCCAGUGAGGGGCCGGCCC−3′

Free energy (target structure): 

Folding probability (target structure): 

Constraint violations: 

Base pair distance of the mfe structure 
to the target structure: 

mfe structure: 

Direct output for copy and paste: 

0

0.850225

−19.50 kcal/mol

1

Designed sequence: 

mfe structure 

Downloadable File Formats (designed sequence + its mfe structure): 

Target structure 
Designed sequence

Allowed constraint violations: 

5′−(((((...(((((......))))).)))))−3′

5′−(((((...(((((......))))).)))))−3′

5′−(((((...(((((......))))).)))))−3′

GGGCCUUCGCCCCCAGUGAGGGGCCGGCCC

RNAML.ct file .fasta file

(((((...(((((......))))).)))))
(((((...(((((......))))).)))))

Figure 1. INFO-RNA web server output. The figure shows the output of a typical computation (design of an IRE with fixed bases in the interior and
hairpin loop and a maximum of two constraint violations at three possible sequence positions).
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structures are always of advantage or how the high GC
content may influence the kinetics of the folding process.
To reduce the GC content, the user can constrain some
positions to A and/or U. In the future, it is desirable to
extend the algorithm to allow the user to specify the GC
content.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Figure 2. Structures and conserved sequence positions of a PIE. The
figure shows the consensus structure and conserved sequence positions
of a PIE that contains two asymmetrical internal loops as binding sites
for U1A proteins (U1A-PIE). Conserved sequence positions are
highlighted in gray.
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