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Abstract

The protein structure prediction problem is one of the most important
problems in computational biology. This problem consists of finding the con-
formation of a protein (given by a sequence of amino-acids) with minimal en-
ergy. Because of the complexity of this problem, simplified models like Dill’s
HP-lattice model [15, 16] have become a major tool for investigating general
properties of protein folding. Even for this simplified model, the structure
prediction problem has been proven to be NP-complete [7, 5].

A disadvantage of the HP-problem is its high degeneracy. I.e., for every
sequence there are a lot of conformations having the minimal energy. For this
reason, extended alphabets have been used in the literature. One of these
alphabets is the HPNX-alphabet [6], which considers hydrophobic amino acids
as well as positive and negative charged ones.

In this paper, we describe an exact algorithm for solving the structure
prediction problem for the HPNX-alphabet. To our knowledge, our algorithm
is the first exact one for finding the minimal conformation of an lattice protein
in a lattice model with an alphabet more complex than HP. We also compare
our results with results as given for the HP-model.

1 Introduction

The protein structure prediction is one of the most important unsolved problems of
computational biology. The problem can be specified as follows: Given a protein by
its sequence of amino acids, what is its native structure? Many results in the past
have shown the problem to be NP-hard. These results indicate that it is unlikely that
one will find a general, efficient algorithm for solving this problem. But the situation
is even worse, since one does not know the general principles why natural proteins
fold into a native structure. E.g., these principles are interesting if one wants to
design artificial proteins (for drug design). For the time being, one problem there is



that artificial proteins usually don’t have a native structure (i.e., there is no stable
structure that will be achieved by the protein).

To attack this problem, simplified models have been introduced, which became a
major tool for investigating general properties of protein folding. An important class
of simplified models are the so-called lattice models. The simplifications commonly
used in this class of models are 1.) monomers (or residues) are represented using
a unified size; 2.) bond length is unified; 3.) the positions of the monomers are
restricted to positions ; and 4.) a simplified energy function.

There are different lattices. In principle, one can approximate real proteins
arbitrarily close using sufficiently complex lattice models. The simplest used lattice
is the cubic lattice, where every conformation of a lattice protein is a self-avoiding
walk in Z3. A discussion of lattice proteins can be found in [8]. There is a bunch of
groups working with lattice proteins. Examples of how lattice proteins can be used
for predicting the native structure or for investigating principles of protein folding
are [21, 1, 10, 20, 14, 11, 12, 2, 17].

An important representative of lattice models is the HP-model, which has been
introduced by [15, 16]. In this model, the 20 letter alphabet of amino acids (and
the corresponding manifoldness of forces between them) is reduced to a two letter
alphabet, namely H and P. H represents hydrophobic amino acids, whereas P rep-
resent polar or hydrophilic amino acids. The energy function for the HP-model is
given by the matrix as shown in Figure 1(a). It simply states that the energy con-
tribution of a contact between two monomers is —1 if both are H-monomers, and 0
otherwise. Two monomers form a contact in some specific conformation if they are
not connected via a bond, but occupy neighbouring positions in the conformation
(i.e., the euclidian distance of the positions is 1). A conformation with minimal
energy (in the following called optimal conformation) is just a conformation with
the maximal number of contacts between H-monomers. Just recently, the structure
prediction problem has been shown to be NP-complete even for the HP-model [5, 7].

H|P
(a) H|-1|0 (b) .
P10 |0 !

Figure 1: Energy matrix and sample conformation for the HP-model

A sample conformation for the sequence PHPPHHPH in the two-dimensional
lattice with energy —2 is shown in Figure 1(b). The white beads represent P, the
black ones H monomers. The two contacts are indicated via dashed lines.

An example of the use of lattice models is the work by Sali, Shakhnovich and
Karplus [21]. The same lattice model is used by several other people, e.g., [1, 20,
2, 12]. The authors investigate in [21] under which conditions a protein folds into
its native structure. For this purpose, they have performed the following computer
experiment on proteins in the cubic lattice:



1.) Generation of 200 random sequences of length 27.

2.) Determination of the minimal structures on the 3 x 3 x 3-cube. The 3 x 3 x 3-
cube has exactly 27 position, which was the reason for using a sequence length of
27L.

3.) simulation of protein folding on the lattice model using a Monte Carlo method
with Metropolis criteria. The Monte Carlo method is as follows. Initially, a random
conformation of the sequence is generated. Starting from this initial conformation,
the algorithm performs so-called Monte Carlo steps in order to search for the minimal
conformation. A single Monte Carlo step consists of the following operations: First,
a local move is selected at random until a move is found that produces a valid
conformation (i.e., a self-avoiding conformation). Two examples of allowed moves
are

B R

Here, the positions of the shaded monomers are changed, and the positions of the
other monomers are kept unchanged.

Second, the resulting conformation is evaluated according to the Metropolis cri-
terion. If the energy of the resulting conformation is lower than the energy of the
previous one, then the conformation is always accepted. Otherwise, the confor-
mation is accepted by random, where the probability of acception depends on the
energy difference?. For every initial conformation, 50 000 000 Monte Carlo steps are
performed.

Now a protein folds in that framework, if the Monte Carlo method finds its native
conformation. The authors have found that a protein folds if there is a energy gap
between the native structure and the energy of the next minimal structure.

In performing such experiments, it is clear that the quality of the predicted
principle depends on several parameters. The first is the quality of the used lattice
and energy function. The second, and even more crucial point, is the ability for
finding the native structure as required by Step 2. For the energy function used
by [21], there is no ezact algorithm for finding the minimal structure. To be compu-
tational feasible, they have restricted in [21] the search for the native structure on
the 3 x 3 x 3-cube, as indicated in Step 2. But this approach has some drawbacks:
1.) The energy function had to be biased to a mean hydrophobicity in order to
get proteins whose native structure is on the 3 x 3 x 3-cube with high probability
(see [21]); 2.) even then, it is not guaranteed that the minimal conformation is on
this cube (for examples in the HP-model see [23]); 3.) the length of the proteins
cannot, be arbitrarily chosen.

Since there is an algorithm for finding the native structure on the HP-model, one
could think of redoing the experiment within the HP-model. But the HP-model has

'In a later paper [10] the authors considered proteins of length 125.

AB
2To be precise, the new conformation is accepted with a probability e*sT . k; is the Boltzmann
constant, and 7' is the folding temperature.



the problem that its degeneracy (i.e., the number of structures of a sequence that
have minimal energy) is large [8, 23]. Hence, there is no dedicated native structure.
But this implies that the HP-model is not suited for these experiments. For this
reason, extended models such the HPNX-model [6] have been introduced.

2 Constraint Formulation

We start with the basic constraint formulation that underlies our search algorithm.
Clearly, this basic formulation is not sufficient to yield an efficient search algorithm.
But it shows how the constraint-based search can be used predicting a minimal
energy structure of an HP (resp. HPNX) sequence. We then indicate which con-
straints have to be added and how to modify the search strategy in order to yield
an efficient algorithm.

2.1 Basic Constraints and Search Algorithm

Our algorithm is based on constraint optimisation, which is the combination of
two principles, namely generate-and-constraint with branch-and-bound. For using
constraint optimisation, we have to transform the structure prediction problem into
a constraint problem. A constraint problem consists of a set of variables together
with some constraints (relations) on these variables.

For specifying the basic constraint problem, we need some definitions. We will
describe the constraint formulation for the HP-model. The HPNX-model is an ex-
tension of the HP-model where the polar monomers are split into positively charged
(P), negatively charged (N) and neutral (X) monomers. The energy function of the
HPNX-model is given by the matrix

H|P|N|X
H[—4[0]0]0
PO 1 [=1]0 (1)
N|O0|-1[1]0
X[ 0[0]0]0

Since the basic constraint formulation is the same for the HP- and the HPNX-
model, we will talk of polar monomers meaning P-monomers in the HP-model and
PNX-monomers in the HPNX-model.

Let s = s1...5, be an HP- (or HPNX)-sequence of length n. A conformation ¢
for this sequence is nothing else but a function ¢ : [1..n] — Z3 assigning vectors to
monomers such that

1. for all 1 < i < n we have ||c(i) —c(i + 1)|| = 1 (i.e., every two successive
monomers i and 7 + 1 have distance 1)

2. and for all i # j we have ¢(i) # ¢(j) (the conformation ¢ is self-avoiding).



Now we can encode the space of all possible conformations for a given sequence
as a constraint problem as follows. We introduce for every monomer ¢ new variables
X;, Y; and Z;, which denote the x-, y-, and z-coordinate of ¢(i). Since we are using
a cubic lattice, we know that this coordinates are all integers. But we can even
restrict the possible values of these variables to the finite domain [0..2n].*> This is
expressed by introducing the constraints

X; € [1..(2 - length(s))] A Y; € [1..(2 - length(s))] A Z; € [1..(2 - length(s))]

for every 1 < i < n. The self-avoidingness is just (X;,Y;, Z;) # (X;,Y;,Z;) for i # j.*
Next we want to express that the distance between two successive monomers is 1,
ie.

|(Xi, Yi, Zi) — (Xig1, Yig1, Zig1)[] = 1

Although this is some sort of constraint on the monomer position variables X;, Y;, Z;
and X;11, Y11, Z;11, this cannot be expressed directly in most constraint program-
ming languages. Hence, we must introduce for every monomer 7 with 1 < i <
length(s) three variables Xdiff,, Ydiff; and Zdiff;. These variables have values 0
or 1. Then we can express the unit-vector distance constraint by

Xdiff; = |X;—Xiyq|  ZAiff; = |Z; — Ziy|
Ydiff, = |V;—Yiy| 1 = Xdiff; + Ydiff; + Zdiff;.

The constraints described above span the space of all possible conformations. IL.e.,
every valuation of X;,Y;, Z; satisfying the constraints introduced above is an admis-
sible conformation for the sequence s, i.e. a self-avoiding walk of s. Given partial
information about X;,Y;,Z; (expressed by additional constraints as introduced by
the search algorithm) we call a conformation ¢ compatible with these constraints on
X;,Y;, Z; if ¢ is admissible and ¢ satisfies the additional constraints.

But in order to use constraint optimisation, we have to encode the energy func-
tion. For HP-type models, the energy function can be calculated if we know for
every pair of monomers (i, j) whether ¢ and j form a contact. ¢ and j form a contact
in a conformation ¢, if j & {i —1,4,7+ 1} and

lle(@) = eI = 1.

For this purpose we introduce for every pair (i, j) of monomers with i +1 < j a
variable Contact; ;. Contact;; is 1 if 2 and j have a contact in every conformation

3We even could have used [1..n]. But the domain [0..2n] is more flexible since we can assign
an arbitrary monomer the vector (n,n,n), and still have the possibility to represent all possible
conformations.

4This cannot be directly encoded in Oz [18], but we reduce these constraints to difference
constraints on integers.



which is compatible with the valuations of X;,Y;,Z;, and 0 otherwise. Then we can
express this property in constraint programming as follows:

Ydiffiyj = |Yi — Yj| Contactiyj € {0, 1}
(Contact;; = 1) & (Xdiff; + Ydiff; + Zdiff; = 1) (2)

where Xdiff;;...Zdiff,; are new variables. The constraint (2) is called a reified
constraint, and can be directly encode in Oz [18].

Using the variables Contact; ;, we can now easily encode the energy function for
HP-type models. This means that we can now define a variable Energy which is
subject to constraint optimisation. For the HP-model, we get the constraint

Energy = Z —Contact; j.
i+1<jAs(i)=HAs(j)=H

For the HPNX-model, the corresponding constraint can be generated analogously
using the energy matrix given in (1).

Thus, we have encoded self-avoiding walks together with a variable Energy.
Now we can describe the search procedure, which is a combination of generate-and-
constraint and branch-and-bound. In a generate step, a undetermined variable var
out of the set of variables {X;,Y;,Z; | 1 < i < n} is selected (according to some
strategy). A variable is determined if its associated domain consists of only one
value, and undetermined otherwise. Then, a value val out of the associated domain
is selected and the variable is set to this value in the first branch (i.e., the constraint
var = val is inserted), and the search algorithm is called recursively. In the second
branch, which is visited after the first branch is completed, the constraint var # val
is added.

Each insertion of a constraint leads through constraint propagation to narrow-
ing of some (or many) domains of variables or even to failure, which both prune
the search tree by removing inconsistent alternatives. Thus the search is done by
alternating constraint propagation and branching with constraint insertion. The
generate-and-constraint steps are iterated until all variables are determined (which
implies, that a valid conformation is found). If we have found a valid conforma-
tion ¢, then the constraints will guarantee that Energy is determined. Let E. be
associated value of Energy. Then the additional constraint

Energy < E. (3)

is added, and the search is continued in order to find the next best conformation,
which must have a smaller energy than the previous ones due to the constraint (3).
This implies that the algorithm finally finds a conformation with minimal energy.
At every node n of the search tree, we call the set of constraints introduced by
the search algorithm so far the configuration at node n. Every conformation that is
found below node n in the search tree must be compatible with the configuration



Caveats Boolean; is 0 if the conformation contains no caveats

Frx, Fry, Frz dimensions of the frame;

E;.seh, E;.soh  number of even and odd H-monomers of the j x-plane in
the frame, respectively (where 1 < j < Frx)

Elem) membership of monomer 7 in the % x-layer; the constraint
Elemé- will be defined only if 7 is an H-monomer
P, .ctp type of the k' position of the frame (where 1 < k < Frx -

Fry - Frz); the core type P,.ctp of the k' position is 1, if
it is occupied by an H-monomer, and 0 otherwise

0% for every position k£ of the frame and every monomer i;
0% has boolean value (i.e., 0 or 1), and is 1 iff monomer i
occupies the k' position of the frame

Figure 2: Some variables and their description.

at m, and vice versa. A bounding function for Energy is a function that takes a
configuration of some node n, and yields some value F, where every conformation
compatible with the configuration of n has an energy greater than FE.

2.2 Auxiliary Variables and Search Strategy

Clearly, the above described constraint problem generated from a sequence s is not
sufficient to yield an efficient implementation. For efficiency, one needs 1.) effective
bounding functions; 2.) the ability for implementing a search strategy that tends to
enumerate low energy conformations first.

We will illustrate this using the concept of the H-frame of an HP-model confor-
mation. Given a conformation ¢, the H-frame is the minimal cube that contains all
H-monomers of ¢. Now an optimal conformation has a maximal compact H-core.
But a conformation with maximal compact H-core has a minimal H-core surface.
Since the H-frame yields a lower bound on the surface of the H-core, we finally get a
bounding function for the energy [22]. If one introduces variables Frx, Fry, Frz for
the dimensions of the frame, we are able to enumerate the Frx, Fry, Frz-variables
before the variables X;,Y;,Z;. This allows to apply the bounding function derived
from the H-frame dimensions Frx, Fry,Frz early in the search tree. Furthermore,
this supports implementing a search strategy that prefers low energy conformation
by enumerating H-frames with minimal dimensions first®.

There are several further auxiliary variables that have been introduced for this
reason. We have listed some of them together with the corresponding, more complex
search strategy in Figures 2 and 3. A detailed description of the variables and search
strategy, and improved bounding functions are given in [4].

°Clearly, the H-frame dimensions Frx,Fry,Frz must satisfy that Frx - Fry - Frz >
# H-monomers in s



Frx Xi

E;.seh ;
Caveats < Fry j - 5€ < Elem} < 0f < Y,
Frez E;.soh

Figure 3: Search Strategy. Variables are selected according to the displayed order.

2.3 HPNX Extensions

As a benefit of our constraint programming approach it is possible to extend the
HP algorithm to find the native structure of HPNX proteins.

Since one can see the HP model as embedded into HPNX, resp. HPNX as an
extension to HP, a first naive approach to do such an extension is as follows. First,
search all HP-optimal conformations of an HPNX sequence, i.e. the conformations
that have maximal H-H-contacts. Then, second, find in the set of the HP-optimal
conformations the ones with optimal HPNX-energy. This approach is certainly
inefficient, since one has a lot of search steps because of the high degeneracy of the
HP-model. But further it yields only those native HPNX-conformations that are
also optimal in HP, but this is not necessarily true.

Our approach starts by updating the energy constraint. Now we get

Energy = —4-HH Contacts — PN_Contacts + PP_Contacts + NN _Contacts,

where HH_Contacts, PP_Contacts resp. NN_Contacts is the number of contacts
between H, P resp. N monomers and PN_Contacts the number of contacts between
P and N monomers.

To get an efficient implementation, we additionally need a good lower bound on
the PN-energy, i.e., —PN _Contacts+ PP_Contacts+ NN _Contacts. If the H-frame
of the conformation is already fixed, we get a good lower bound by introducing the
concept of compartments, which we will define now.

Given two points (z,y,2) and (2/,1/,2') in Z3, we define the distance function

D((z,y, 2), («',y',2'))® by
D((x,y,2), (2", y, 7)) = |z = a'| + |y = ¢| + |z = Z|.

Let Py denote the set of all points contained in a given H-frame f. Then we define
the H-frame distance Dy of a point (z,y, z) by

Dy (x,y,2) = min{D((z,y, 2), (2, ¢/, 2)) | (+',4/,2") € Pr}.

Fix an H-frame f. We define a compartment C' with H-frame distance d as a maximal,
connected set of points, where all points have the same H-frame distance d. Note,
that according to our definition there is a single compartment with H-frame distance

D is the distance function corresponding to the 1-norm.



0, which is just the H-frame. Higher order compartments are placed around the H-
frame as planes, lines and points. The compartments with H-frame distance 0 and
1 are as follows:

H-frame
(distance 0) ’
" H-frame distance 1
| Ty
H-frame distance 1 G
h

Now this concept helps us pruning the search tree in two ways. First, not
every polar monomer ¢ can be member of any compartment C'. Instead, there is
a restriction which depends on the H-frame distance of C' and the position of 7 in
the sequence. Second, we have found an appropriate lower bound on the PN-energy
provided that membership of polar monomers to compartments is determined. We
have to skip this part here due to space restrictions.

Lemma 2.1 Let s be an HPNX-sequence of length n and © be a monomer of type
P,N or X. We define leftdist(i,s) to be the minimal distance of i to an H-monomer j
in s with j < i if exists, and 0o otherwise. Analogously we define rightdist(i,s). Then
i can be a member of compartment C with H-frame distance d, iff leftdist(i,s) >
d A rightdist(i, s) > d + 1, or leftdist(i, s) > d + 1 A rightdist (i, s) > d.

This can be directly encoded using constraints. The effect is that fixing the
position of some H-monomers will determine the membership of PNX-monomers to
compartments early in the search tree. This allows to apply our lower bound.

3 Results

S1hp HPPPPHHHHPPHPHPHHHPHPPHHPPH | S3hp HPHHPPHHPPHHHHPPPHPPPHHHPPH
S1  HXXNNHHHHXPHXHXHHHNHPPHHXPH | S3 ~ HPHHNXHHPNHHHHXXXHXPXHHHPXH

S2hp HPPPHHHHPHPHHPPPHPHHPHPPPHP | S4hp HHPHHPHHPHHHHHHPPHHHHHPPHHHHHHH
S2  HXXXHHHHNHXHHXXNHPHHPHXNXHP | S4 HHXHHPHHXHHHHHHPPHHHHHXNHHHHHHH

S52.1 HXNNHHHHXHXHHNXNHXHHNHPPXHP | S5hp PHPPHPPHPPHPPHPPHPPHPPHPPHPPHPPHPPHP
S2.2 HXXNHHHHXHPHHPXXHXHHXHXNNHX | S5 XHXNHXXHNPHXXHPXHXXHXNHPXHNXHPXHXPHX

Table 1: Test sequences

We investigate a set of test sequences as shown in Table 1. Here, we have
grouped the sequences, such that for every group ¢ there is a HP-sequence Sihp,
from which the other sequences are generated by replacing P monomers by P, N
and X monomers. We will call the Sthp the generating HP-sequence of the HPNX-
sequences in %.



sequence #steps find # steps prove | sequence F#steps find # steps prove
S1 3387 10237 S2 47 1879
S2.1 211 2089 S2.2 39 1963

S3 25 4879 S4 156 156

S5 507 18103

Table 2: Search steps for sample sequences

The algorithm finds the native structure of all sequences listed in Table 1. Note
that there is a difference between finding the native structure, and proving that the
best found structure is really the optimal one (which requires that the complete
search space has been investigated). Hence, we display in Table 2 the search steps
needed to find the native conformation (# steps find), and the number of steps
needed to show that the best found conformation is really optimal (# steps prove).
In Table 3, we have compared the degeneracy of the HPNX-sequences with the
corresponding HP-sequences. One can find that the degeneracy is strongly reduced
in the HPNX-model.

sequence HPNX HP
degeneracy degeneracy

S2 2 297

S2.1 4 297

S2.2 51 297

S4 51 1114

S5 16 3538

Table 3: Comparison of the degeneracy in the HPNX- and HP-model for some
sample sequences as found by our algorithm. For the HP-sequences (second column),
the same level of degeneracy was found in [22].
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