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Zusammenfassung

Cette nouvelle édition differe peur de la précédente. J’ai ajouté quelques pages sur
les correspondances entre les points de deux surfaces, en particulier sur la théorie
des surfaces applicables. D’autre part, pour ne pas augmenter les dimensions du
volume, j’ai dû supprimer quelques paragraphes consacrés à des questions acce-
soires, comme la transcendance du nombre e, les intégrales pseudo-elliptiques, etc.,
qui, malgré leur intérêt, ne sont pas indispensables à un candidat à la licence.

J’adresse de nouveu mes sincères remerciements à M. René Gosse, qui a continué à
me prêter son concours pour la correction des épreuves.
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1. Introduction

The present work deals with a problem that can be called constructive learning:
given a set of data which are to be used as training data, produce new instances
which share some characteristics with the original data.

Most importantly, the kind of data that will be addressed is structured data, that is,
graphs. In contrast to the case of non-structured data, such as in drawing samples
from a given probabilistic distribution, the generation of new instances of struc-
tured data is not so well-studied and is in principle more difficult. The difficulties
arise from the fact that the added structure imposes restrictions on what kind of in-
stances can be generated; this restrictions may be moreover domain-dependent in
the sense that the rules to determine the feasibility of new structures will in general
be different for different types of information. A graph that might be a valid rep-
resentation of a protein might be meaningless as a representation of a crystalline
structure, say.

The problem is complicated further when we take into account the fact that there
are properties that we want the new structures to have. This will introduce further
restrictions on which structures are feasible, and will introduce a new modelling
hypothesis as well. This hypothesis is best described as the assertion that the
structural and geometrical properties of a given graph will be decisive in defining
whether it has or lacks the desired property. A canonical example of this can be seen
in chemoinformatics, where one of the tasks of drug discovery is to produce mod-
els of the biochemical activity of molecules based on their spatial structure. This
is quantified by defining measures of similarity between the structures and their
respective sub-structures, which will be the motivation behind one of the central
concepts in this work: that of a graph kernel. Kernel methods for graphs typically
depend on spatial relations between pairs of nodes in each graph only, and not in
the relations between larger subgraphs. Here lies the main contribution of this the-
sis: studying the extent to which these methods can be generalized to incorporate
this additional information.

Another concept central to the approach presented here is that of a graph grammar,
a set of production rules which will provide a means to abstract all the relations be-
tween substructures that are present in the data, and use these as guides in the
creation of new structures. This concept will also need to be adjusted to accommo-
date the case in which the relational information between entire subgraphs is used
in the modelling.
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Chapter 1 Introduction

The core of the thesis is chapter 2, which encompasses all the necessary components
in a solution to this problem under the name graph sampling. The general concept
of a graph kernel is introduced, then a specific kernel is defined which will allow us
to model graphs in such a way that their structural information can be incorporated
into the model. A way to circumvent the Graph Isomorphism Problem will be pre-
sented, as well as a method to discretize the information present in a graph’s nodes
if it comes in the form of vectors. Having defined this, we will be able to define ways
to encode the local structural properties of the graphs in their node labels, and use
this in the construction of the graph grammar. With this we will then be able to
obtain probability distributions over sets of graphs and use these in the generation
of new instances.

An empirical evaluation of this is presented in chapter 3, where we will be able
to measure the performance impact of using this structural information both in
classification models for graphs and in the generation of new ones. The information
used here will be drawn from biological assessment experiments, or bioassays for
short, which will enable us to fit binary classification models to the molecule data
sets (they are always divided in active and inactive molecules for each bioassay).
Having these it will then be possible to induce the necessary grammars over the
data, and then construct new instances and evaluate them by using them to re-
train the classification models. Chapter 4 will close with some remarks about the
results obtained and possibilities for further work in this direction.
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2. Graph Sampling

2.1. Overview

This chapter defines the conceptual framework on which the graph sampling meth-
ods are based. Some elementary concepts from graph theory are introduced, fol-
lowed by the definition of graph kernels. After defining a kernel function that will
be used throughout the rest of the work, a general method of handling vector-valued
information in a graph’s node labels is described. Two kinds of such information are
defined, which will be informative in constructing classification models over graphs.
A grammar for graphs is then defined, and finally the sampling algorithm is built
by bringing all these elements together.

2.2. Problem Description

Graphs can be used to represent objects from a number of domains in science and
engineering in a concise fashion. A few examples: any kind of network can be nat-
urally represented as a graph; probabilistic graphical models represent the struc-
ture of conditional dependence between random variables using directed graphs;
in physics and chemistry, the structure of molecules can be represented as graphs,
with the vertices representing atoms and edges the bonds between them.

Beyond this, there may be situations in which the ultimate matter of interest is not
in the graphical representation itself, but in what information it may provide about
the underlying entity it represents. An immediate example is taken from biochem-
istry: given a family of compounds, each represented by its corresponding molec-
ular graph, can the information stored in these graphs be used to predict which
compounds will be biochemically active and which ones will not? This is in fact
possible, and the key idea is to transform the graphs into a vectorial representation
which then allows the use of kernel functions and machine learning algorithms to
estimate probability densities over the graphs themselves and produce classifica-
tion models.

Example 2.2.1. Some more examples of graphs.

The next question, and the one this thesis is focused on, concerns the production
of new structures which share the properties of the original ones. Recovering the
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Chapter 2 Graph Sampling

Figure 2.1.: Molecular structure of caffeine represented as a graph. Hydrogen
atoms have been removed for clarity.

Figure 2.2.: A tree, a particular type of graph.
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2.2 Problem Description

example from biochemistry described above, after classifying a set of molecules into
active and non-active we might be interested in producing new molecules which
could be classified as being active based on their structural properties, yet are dif-
ferent from the ones seen before. It is precisely this process of generating new
structures from the given information that will be referred to as graph sampling, in
analogy to the “classical” concept of sampling, understood as the drawing of random
values from a given probability distribution. In Figure 2.3 we can see an example
of this, where a histogram summarizes 1000 values drawn from a Poisson distribu-
tion.
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Figure 2.3.: Histogram showing 1000 draws sampled from a predictive posterior
distribution, represented by the red line.

Among the numerous techniques for sampling which exist, the Metropolis-Hastings
algorithm is a praticularly well-known method, which we will briefly review here
due to its relevance to the graph sampling algorithm that will be developed later
on. A more in-depth presentation can be found e.g. in [CG95].

The Metropolis-Hastings algorithm is an instance of a Markov Chain Monte Carlo
sampler, so called because given an arbitrary probability density f (x), these meth-
ods will construct an irreducible, aperiodic Markov chain that has f as its station-
ary distribution. The way Metropolis-Hastings does this can be summarized as
follows: let f (x) be the density being sampled from, and x0 an initial value. Fur-
thermore, we assume we have another probability density p from which we can
generate candidate values, and which depends on the current state of the process,
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Chapter 2 Graph Sampling

i.e. p = p(x, xt). This is called the proposal distribution. The procedure is described
in 1.

Algorithm 1 Metropolis-Hastings sampling algorithm
Input: x0: Starting point

f (x): target distribution
p(x, xt): proposal distribution N: maximum number of iterations

1: for t = 1, . . . , N do
2: Generate a value x∗ from p(xt−1, ·).
3: Generate u from a uniform distribution U(0,1).
4: Compute the ratio

R = f (x∗)p(x∗, xt−1)
f (xt−1)p(xt−1, x∗)

5: Compute the acceptance probability, α=min{R,1}
6: The next value of the process is then given by

xt+1 =
{

x∗ if α≥ u
xt otherwise.

7: end for
Output: (xt)N

t=1 will then be a realization of a Markov chain with a stationary dis-
tribution matching f (x).

Three important observations can be made at this point. First, by virtue of the def-
inition of the ratio R, we can either provide the target density itself, f , or a density
that is proportional to it, F = c f (x) for some constant c. Second, the algorithm is
fully specified by the proposal distribution. Third, the proposal distribution need
not be symmetric, but if it is then the acceptance probability reduces to

α=min
{

f (x∗)
f (xt−1)

,1
}

.

What this means is that if f (x∗)≥ f (xt−1), then the chain will certainly move to x+,
otherwise it only moves with probability f (x∗)/ f (xt−1).

2.3. Graph Kernels

Before presenting the mathematical machinery necessary to elucidate the problem
just described it is necessary to give a formal definition to some concepts. Most of
these are elementary concepts in graph theory and can be consulted in any reference
book, for instance the work by Gross and Yellen ([GY03]).

12



2.3 Graph Kernels

Definition 2.3.1. A graph G is defined by two sets, V and E, and denoted by G =
(V ,E). The elements of V will be called nodes or vertices, while the elements of E
will be called edges.

Definition 2.3.2. Let G be a graph. Then:

• G is a rooted graph if one of its vertices, v, is defined as its root. The graph is
then denoted by Gv.

• The distance between two vertices u, v ∈V (G), denoted by d(u,v) is the length
of the shortest path between them.

• The neighborhood of radius r of a vertex v is defined as Nr(v) = {u ∈ V (G) |
d(u,v)≤ r}.

• If W = {w1, . . . ,wk}⊂V (G), the subgraph induced by W is the graph with W as
its vertex set, and which contains every edge of G with endpoints in W .

• For v ∈ V (G), the neighborhood subgraph of radius r of v is the subgraph
induced by Nr(v). It is denoted by N v

r .

• G is a labeled graph if its vertices and/or edges are labeled by symbols from a
finite set Σ.

• Two graphs G1 = (V1,E1), G2 = (V2,E2) are isomorphic if there exists a bijec-
tion φV1 →V2 such that there is an edge uv ∈ E1 if and only if there is an edge
φ(u)φ(v) ∈ E2, and the label information is preserved.

• A graph invariant is a graph property that is identical for two isomorphic
graphs.

The concept of kernel that will be used in this work is the same as in current ma-
chine learning literature, but it has its roots in N. Aronszajn’s seminal 1950 work,
Theory of Reproducing Kernels (cf. [Aro50]). A more modern overview of the con-
cepts is given in [HSS08].

Definition 2.3.3. Let X be a set, and K : X × X → R a mapping. K is said to be a
(positive semidefinite) kernel if it fulfils the following conditions:

• K(x, y)= K(y, x) for any pair x, y ∈ X (symmetry).

• For any x1, . . . , xn ∈ X , the matrix defined by (K i j)= K(xi, x j is positive semidef-
inite.

Example 2.3.1. Let x, y ∈Rn. Then the following functions are positive semidefinite
kernels:

1. K(x, y)= xT y+ c, the linear kernel.

2. K(x, y)= exp−
(‖x−y‖2

σ2

)
, the Gaussian kernel. (σ> 0)

3. K(x, y)= (αxT y+1)d, the polynomial kernel. (α ∈R, d ∈N)
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Chapter 2 Graph Sampling

For a given function φ : X → R, if K can be represented as the Euclidean inner
product, K(x, y) = 〈φ(x),φ(y)〉, then K is a kernel function. It can be shown that
under certain conditions, a given kernel function K can be represented by a certain
function φ (cf. [Aro50] for details). The function φ is called the feature map of K ,
and the vector space induced by it is then called the feature space of K .

New kernels can be constructed from existing ones, in particular we have the fol-
lowing

Proposition 2.3.1. If K and K ′ are kernels, their sum K +K ′ is also a kernel.

Definition 2.3.4. If E ⊂ X , then a kernel K : E×E →R induces a new kernel, called
its zero-extension:

K0(x, y)=
{

K(x, y) if x, y ∈ E
0 if x ∉ E or y ∉ E

Consider now the case where x ∈ X is a composite object, and xi ∈ X i are its com-
ponent parts, for i = 1, . . . ,D. We assume that the X i are countable sets. Consider
furthermore the relation R on the sets X1, . . . , XD , X defined by R(x1, x2, . . . , xD , x) if
and only if x1, . . . , xD are the component parts of x. With this we define the function
R−1 by

R−1(x)= {(x1, . . . , xD) | R(x1, . . . , xD , x)} .

Definition 2.3.5. Let x, y ∈ X , with x̄ = (x1, . . . , xD), ȳ = (y1, . . . , yD) decompositions
of x and y respectively. If K i is a kernel function on X i for i = 1, . . . ,D, consider the
following symmetric function:

K(x, y)= ∑
x̄∈R−1(x)
ȳ∈R−1(y)

D∏
i=1

K i(xi, yi),

defined on E = {x ∈ X | R−1(x) 6=∅}⊂ X . The R-convolution of K1, . . . ,KD , denoted by
K1 ∗·· ·∗KD is then defined as the zero-extension of K to the entire set X .

Theorem 2.3.2. If each of the K i is a kernel on X i and R is a finite relation on
X1, . . . , XD , X, then X1∗·· ·XD is a kernel on X. This kind of kernel function is called
a convolution or decomposition kernel.

Proof. See Theorem 1 in [Hau99].

We will now make use of the concept of decomposition kernel to define a specific ker-
nel that can be applied to graphs. This function, called the Neighborhood Subgraph
Pairwise Distance Kernel (NSPDK), was defined in the paper [CG10] by Costa and
de Grave, and the presentation of the concepts here closely follows the original one.

14



2.3 Graph Kernels

Definition 2.3.6. The exact matching kernel for graphs, δ, is defined by

δ(x, y)=
{

1 if x and y are isomorphic
0 otherwise.

Consider a graph G and two rooted graphs Av, Bu. Define the relation Rr,d between
the three graphs as being true if and only if Av, Bu ∈ {Nv

r | v ∈ V (G)}, i.e., if both
rooted graphs are (isomorphisms of) neighborhood subgraphs for some vertices u, v
of G such that D(u,v)= d.

We can then define the decomposition kernel κr,d over the graph G as the kernel
induced by the relation Rr,d defined above:

κr,d(G,G′)= ∑
Av,Bu∈R−1

r,d(G)

A′
v,B′

u∈R−1
r,d(G′)

δ(Av, A′
v′)δ(Bu,B′

u′).

This kernel can be normalised as follows:

κ̂(G,G′)= κr,d(G,G′)√
κr,d(G,G)κr,d(G′,G′)

,

and thus we arrive at the desired kernel:

Definition 2.3.7. Let G, G′ be two graphs, and r∗, d∗ two pre-defined values for
radius and distance. Then the Neighborhood Subgraph Pairwise Distance Kernel
(NSPDK) is given by

K(G,G′)=
r∗∑

r=1

d∗∑
d=0

κ̂r,d(G,G′).

A key feature of this kernel is the exact matching kernel over two graphs, δ. Obtain-
ing its exact value is equivalent to solving the graph isomorphism problem, which
involves finding a reasonable (i.e., polynomial-bound) algorithm for determining ex-
actly when two graphs are isomorphic. This problem is, at the moment of writing
these lines, still unsolved and has been deemed intractable, so an approximate so-
lution is needed: the one used here comes in the form of graph invariants and will
be explained more in-depth in the following section. A good overview of the graph
isomorphism problem itself, as well as different approaches to an approximate so-
lution to it, is given by Read and Corneil in [RC77].
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Chapter 2 Graph Sampling

2.4. Graph-invariant Encodings

The task is now to provide an approximation to the value of δ(G,G′) for two arbi-
trary graphs G and G′. Again following the presentation given in [CG10] we will lay
down the general principles of an encoding, which will be extended in the remainder
of this work.

The approximate implementation the exact matching kernel has two main parts:

1. Compute a time-efficient graph-invariant encoding via a label function.

2. Compare the graph labels via a hash function.

This reduces the isomorphism test between two graphs to a comparison between
integer numbers, with the following caveat: it is possible that two non-isomorphic
graphs will be assigned the same identifier by using this procedure.

For the first step, the label function, we begin by defining label functions for nodes
and edges, Ln and Le. For a given rooted graph Gh, the function Ln assigns to a
node v ∈ V (Gh) the concatenation of the lexicographically sorted list of distance-
label pairs, {(D(v,u),L(u)) | u ∈Gh}, augmented with the distance from v to the root
node h, D(v,h). Based on this the edge label function Le assigns to an edge uv
the label (Ln(u),Ln(v),L(uv)). Finally the graph encoding for the graph, Lg(Gh), is
given by the concatenation of the lexicographically sorted list of the newly formed
edge labels, {Le(uv) | uv ∈ E(Gh)}.

The second step consists of using a Markle-Damgård hashing function to map the
resulting string Lg(Gh) to a 32-bit integer value (cf. [Dam90] for details on this).
Using this the features calculated by the NSPDK function can be encoded explicitly:
a feature is in this case a pair of rooted neighborhood graphs, say A and B, the roots
of which are at a given distance d. These graphs will be encoded by the procedure
just described, resulting in the pseudo-identifiers H(L g A) and H(L gB). We can
then represent the feature by the triplet (d,H(L g A),H(L gB)), and the pseudo-
identifier for the feature will be the hash value of this triplet. This will allow us to
work directly on sparse vector representations.

For this procedure to be applicable, a fundamental property is required of the vertex
labels: they are assumed to be of a discrete nature. More precisely, it is assumed
that for each node v ∈ Gh, the value of Ln(v) will always be an element of a finite
“alphabet”. The graph-invariant encoding obtained in this fashion will be called
discrete encoding in the sequel.

2.5. The case of vector labels

As presented above, the graph-invariant encoding being discussed here has at least
one aspect that is readily susceptible of generalisation: the initial vertex labels

16



2.5 The case of vector labels

L(v). These labels, as handled by the algorithm just described, do not necessarily
contribute any information about the structure of the graph beyond the individual
identifier of each node. Consider the following examples:

• In the “natural” representation of a molecule where each node represents an
atom, the node labels will give a specific piece of information about each spe-
cific atom, such as its atom type, its atomic number, its charge, and so forth.

• A graph representing a social network will have one node representing an
individual in the network. The node labels will then contain specific informa-
tion about this individual, such as name, address, age, nationality, to name
but a few.

This brings us to one of the central questions explored in the development of this
thesis: what kind of information can be used in the node labels to inform a kernel
function about the local structure of the graphs being studied? The ultimate ob-
jective of this is to test the hypothesis that, since the kernel function will induce a
similarity measure, the accuracy of a classification algorithm will improve with this
new annotation in the graph’s nodes.

In this section we will work with vector-labelled graphs, that is, where every vertex
v ∈ V (G) will be assigned a label Ln(v) ∈ Rd, for some value of d. We will see how
such labels can be produced in a meaningful manner, that is, in a way that they
represent information about local structure that can be used by the graph kernel.
Before that, however, we will need to define a procedure that converts these labels
into something that is actually usable by the graph-invariant encoding function
defined before. In other words, what is needed is a discretization procedure.

Algorithm 2 Vector label discretizer
Input: G : Set of vector-labelled graphs

n: maximum number of clusters
label_size: number of discretization steps

1: discretization_models ← empty list
2: n_clusters ← logarithmically spaced sequence between log10 s and log10 n
3: M ← matrix with all the label data from all graphs
4: for c ∈ n_clusters do
5: model_c ← a K-means clustering model trained on the data in M, with c

clusters
6: Append model_c to discretization_models.
7: end for

Output: A list of discretization models, with as many elements as required by la-
bel_size.

17



Chapter 2 Graph Sampling

2.5.1. Metric Encoding

Having defined a way to discretize the vector labels of a graph, we now turn to the
question of what information it is actually useful to encode in the vertex labels,
starting from the base case in which these are all discrete. To this end let us start
with the following assumptions about a graph G:

• The nodes of G can be embedded in n-dimensional Euclidean space. In par-
ticular, for each v ∈V (G) we have its coordinate vector, which we represent by
(v1, . . . ,vn).

• The node labels of G are all elements of a finite set, Σ.

Having this, the idea behind this encoding is the following: given an integer pa-
rameter k, every node of a graph G will have as label a vector that represents the
distance, or a monotone function of it, of the node v to the k nearest nodes; to make
this more specific the k nearest nodes are selected not from the entire vertex set,
but from each of the subsets of V (G) defined by Vi(G) = {v ∈ V (G) | Ln(v) = i}, for
all i ∈Σ. This vector will then encode the vicinity of every vertex, as defined by its
proximity to other vertices of every possible kind.

The function to generate this encoding is described in algorithm 3.

Example 2.5.1. An image representing the metric encoding for molecular graphs.

Algorithm 3 Metric encoding algorithm
1: function LM(v, k, θ, β)
2: let s = |Σ|, res =∅
3: D ← array of pairwise distances of all u ∈V (G)
4: for each value σi ∈Σ do
5: Vσi ← {u ∈V (G) | L(u)=σi}
6: D ⊃ di ← all distances from v to elements of Vσi

7: if |Vσi | < k then
8: di ← di ∪ (M, · · · , M) such that |di| = k, for some M À 1
9: end if

10: for any d ∈ di such that d > θ do
11: d ← θ

12: end for
13: di ←β(di)
14: res ← res ∪ di
15: end for
16: return res
17: end function

18



2.5 The case of vector labels

2.5.2. Topological Encoding

The encoding presented in subsection 2.5.1 is not the only possible graph-invariant
encoding that satisfies the requirements posed by the problem at hand. A second
encoding was devised and tested for this thesis, called topological because it was
inspired by recent work in applied topology, in particular by what is now called
persistent homology.

We again require that, for any graph G being analysed, its nodes can be embedded
in Euclidean space (although for the sake of generality, any metrizable topological
space would do). The key observation here is that the metric structure of the graph
defines a particular “‘shape” for it, in a way that is independent of the informa-
tion contained in its edges. Before making this more precise, we need to define an
important concept:

Definition 2.5.1. If S is a discrete set, an abstract simplicial complex is a collection
X made by finite subsets of S that is closed under restriction: any non-empty subset
of X is again an element of X . For each σ ∈ X , if |σ| = k+1, σ is called a k-simplex.

Example 2.5.2. A graph is an example of simplicial complex. Its vertices form a
set of 0-simplices, while its edges form a set of 1-simplices.

Definition 2.5.2. Let ε> 0, and E ⊂Rn a discrete set. The Vietoris-Rips complex of
scale ε on E, V Rε(E), is the simplicial complex formed by the pairwise sets of points
in E at a distance no larger than ε.

Although this concept is of central important to the modern field of computational
topology, it really has its roots in the work of Leopold Vietoris in 1927 (cf. [Vie27]).

Example 2.5.3. A nice picture of a Vietoris-Rips complex.

One could legitimately ask: which is the “optimal” value of the ε parameter? A
simple example shows why this question is not necessarily meaningful:

Example 2.5.4. Image showing the behaviour of the VR complex for increasing
values of epsilon on the same data set.

Thus, a more pertinent question would be: which features revealed by the Vietoris-
Rips complexes for a range of values of ε are essential to the structure of the data,
and which are merely noise? This is precisely the question which the study of per-
sistent homology aims to address, by constructing increasing sequences of Vietoris-
Rips complexes, (V Ri), indexed by increasing values of the parameter εi, and as-
sociating topological features in the complexes to parameter intervals. The idea is
then that the features which persist through larger intervals will be associated with
essential topological features of the space in question. We do not pursue this matter
further here and instead go back to the problem of determining a graph-invariant
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encoding that captures local structural information from the graph itself. An reader
interested in persistent homology can consult the available literature, notably the
work of Carlsson ([Car09]) and Ghrist ([Ghr07]).

By looking again at the examples of the construction of a Vietoris-Rips complex,
we can see that for each value of the ε parameter, each of the points in the space
can be seen to posses some information about its immediate vicinity, and that this
information can be obtained from the simplex or simplices in which the point is
located. We could take, for instance, the size of the associated simplices, or their
degree, or even the degree of the homological features associated with them. In
this work we chose the first quantity, as it represented the least difficulties in its
implementation. This is described in detail in algorithm 4.

Algorithm 4 Topological encoding algorithm
1: function LT(v, Dmax, n)
2: D ← array of pairwise distances of all u ∈V (G)
3: {εi}←

{
Dmax

i
n | i = 1, . . . ,n

}
4: N ←|V (G)|
5: l = 0̄ ∈Rn

6: for each value εi do
7: P ← {u ∈V (G) | d(u,v)≤ εi}
8: l i ← |P|

N
9: end for

10: return l
11: end function

2.6. Graph Grammar

The sampling approach proposed here is based in the Metropolis-Hastings algo-
rithm, a Markov chain Monte Carlo method used to sample from probability densi-
ties which cannot be directly sampled from. This algorithm depends on a proposal
distribution g(x) used to generate new values, and an acceptance distribution A(x)
used to determine whether the generated values can be accepted as conforming to
the desired distribution. In the present case it is necessary to adapt these concepts
to the case of structured information in the form of graphs, and the first step toward
this consists in recasting the problem into one of grammatical inference. The pre-
sentation given here, as well as in the next section, is based on the paper [Cos14].

Definition 2.6.1. A core graph Cv
R(G) is a neighborhood graph of G, of radius R,

rooted in v. An interface graph Iv
R,T(G) is the difference graph of two neighborhood

graphs, both rooted in v, and with radii R−1, R+T.
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2.7 Graph Sampling

Definition 2.6.2. A core graph is said to be corresponding to an interface graph
if it is the smallest neighborhood graph in the definition of the interface graph.
Congruent cores share at least one corresponding interface (modulo isomorphism).

Definition 2.6.3. A graph grammar is a finite set of production rules. A production
rule is a triple S = (M,D,E) where

• M is the “mother” graph

• D is the “daughter” graph

• E is an embedding mechanism

In this case both mother and daughter graphs will be unions of cores and corre-
sponding interfaces, where the interfaces are required to be isomorphic. The em-
bedding mechanism will then be the isomorphism between them. The way a pro-
duction rule is applied is to swap congruent cores, and rewire the resulting graph
to the host graph.

Since we are confronted again with the task of identifying isomorphic graphs, the
graph-invariant encodings described in the previous subsections will come into play
again. In particular, the grammar will be stored as a data structure that contains
all the congruent cores for a given interface. What will be actually stored are the
integer pseudo-identifiers (hashed values) described at the end of section 2.4. The
grammar itself is implemented as a function that takes as input a set of graphs, G ,
and two parameters: a maximum radius R̂ and a maximum thickness T̂; in output
it produces a mapping M from the set of interfaces to the set of cores. This mapping
will indicate which cores are congruent with each of the interfaces.

This grammar will be used to estimate the proposal distribution in the sampling
algorithm, in a way that will be described in the next section. A first version of this
grammar is described in algorithm 5.

The question remains of how to adapt this algorithm for the case of graphs with
vector labels. Two modifications are necessary: first, a label discretizer needs to be
incorporated to the process. Second, the hash value for the core graphs will now
also take into consideration the interface to which it is attached. In other words the
core hash value will now be calculated for the union of core and interface graphs.
Introducing the vector labels will greatly increase the number of different cores
and interfaces, and by modifying the core hash value like this it is expected that
the matches will be more context-sensitive. The modified algorithm is described in
algorithm 6.

2.7. Graph Sampling

As described before, the sampling algorithm is based on the idea of the Metropolis-
Hastings algorithm (cf. algorithm 1). We therefore need to specify a proposal distri-
bution and a way to calculate the acceptance probability. We assume that we have a
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Chapter 2 Graph Sampling

Algorithm 5 Locally Substitutable Graph Grammar Induction
Input: G : Set of graphs to induce the grammar

R̂: maximum radius
T̂: maximum thickness

Output: Map M : interface 7→ core
1: for G ∈G do
2: for v ∈V (G) do
3: for R ← 1 to R̂ with R ← R+2 do
4: c ← Cv

R(G)
5: nc ← PseudoIdentifier(c)
6: for T ← 2 to T̂ with T ← T +2 do
7: i ← Iv

R,T(G)
8: ni ← PseudoIdentifier(i)
9: M(ni)← nc

10: end for
11: end for
12: end for
13: end for

Algorithm 6 Locally Substitutable Graph Grammar Induction - vector labels
Input: G : Set of graphs to induce the grammar

R̂: maximum radius
T̂: maximum thickness
D, a label discretizer

Output: Map M : interface 7→ core
1: for G ∈G do
2: Apply the discretizer D to G to obtain the new vertex labels.
3: for v ∈V (G) do
4: for R ← 1 to R̂ with R ← R+2 do
5: for T ← 2 to T̂ with T ← T +2 do
6: c ← Cv

R+T(G)
7: nc ← PseudoIdentifier(c)
8: i ← Iv

R,T(G)
9: ni ← PseudoIdentifier(i)

10: M(ni)← nc
11: end for
12: end for
13: end for
14: end for
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2.7 Graph Sampling

set of seed graphs, GS, that will be used as initial conditions for the Markov chain;
also required is another set of graphs G that will be used in the induction of a graph
grammar.

We will also need a probability measure to be defined over the graphs being gener-
ated, which will allow us to calculate the acceptance probability for the sampling
algorithm. We can do this using a scheme called one-class-SVM introduced by
Schölkopf et al (cf. [SPST+01]). The idea presented there is that, since we can
operate directly on the feature representation of the data, it is possible to construct
an support vector machine (SVM) classifier function f that separates most of the
given data from the origin with maximum margin, thus defining a domain which
contains most of the data points. With this, and the additional assumption that
the distance of a point to this hyperplane is proportional to the actual probability
density around it, we can then estimate the probability density values on the set of
graphs.

The sampling algorithm works as follows: for each vertex v of a given seed graph G,
the sampler will decompose the neighborhood of v into cores and interfaces and will
draw congruent cores from the grammar. The probability of a core being drawn is
proportional to its frequency in the data used to induce the grammar, if the graphs
being processed have discrete node labels, or proportional to the core’s score as
calculated by the SVM function f . This gives us the proposal density p. The core
obtained from the grammar is then swapped into the old graph, generating a new
one, G′. Using f we can also estimate the probability for each of the two graphs,
which we use in calculating the acceptance probability:

α= f (G′)p(G′,G)
f (G)p(G,G′)

.

The proposal distribution is symmetric, however, so the probability of acceptance
reduces to min

{
1, f (G′)/ f (G)

}
. It thus becomes a question of whether G or G′ has a

greater distance from the separating hyperplane of the SVM model, and therefore
a larger estimated probability.

Algorithm 7 describes the entire procedure. Two new elements here are the Sub-
stitute and Accept functions, which play the role of the proposal distribution and
acceptance probability respectively, as seen in algorithm 1.
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Algorithm 7 Metropolis-Hastings Graph Sampler
Input: G : Set of graphs to induce the grammar

R̂: max. radius
T̂: max. thickness
GS: set of seed graphs
Imax: max. number of iterations
Ln: a graph-invariant encoding
D: a discretizer for the node labels

Output: Set of novel graphs GO
1: function GRAPHLEARN(G , R̂, T̂, GS, Imax, Ln)
2: for G ∈G do
3: Annotate the nodes of G with Ln

4: end for
5: if The graphs have vector-valued node labels then
6: Apply the discretizer D to every graph G ∈G

7: end if
8: Induce the graph grammar and the one-class-SVM:
9: M ← local substitutable graph grammar

10: f ← one-class-SVM
11: for Gs ∈GS do
12: Initialize the working set for Gs:
13: GW ←Gs
14: for t = 1, . . . , Imax do
15: for G ∈GW do
16: for v ∈V (G), R ≤ R̂, T ≤ T̂ do
17: nc ← Cv

R(G)
18: ni ← Iv

R,T(G)
19: for c ∈ M[ni] do
20: G′ ← Substitute(G,v, c)
21: if Accept( f ,G,G′) then
22: GW ←G′

23: GW \G
24: end if
25: end for
26: end for
27: end for
28: end for
29: GO ← argmax

G∈GW

f (G)

30: end for
31: return GO
32: end function
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3. Experimental Setup

3.1. Overview

This chapter will present an empirical evaluation of the techniques previously de-
scribed. The first part will present and compare the results of binary classification
models for molecular data using the graph kernel from section 2.3, both with dis-
crete and vector-valued labels. Other relevant information, such as runtimes and
dependence on parameters, is also discussed. The second part of the chapter will
compare the results produced by graph sampling algorithm, again for discrete and
vector-labelled data, starting from several of the classification models that have
been introduced.

3.2. Classification Models

3.2.1. Data Overview

The graph-invariant encodings and sampling algorithms were tested on informa-
tion taken from the public PubChem bioassay databases. A total of 54 bioassays
were considered, more detailed information about them can be consulted in Appendix A.
The model fitting and evaluations were carried out using the Python package Ex-
plicit Decomposition with Neighborhoods (EDeN, cf. [CGS+15]).

3.2.2. Hyperparameter optimization

The first step was the training of a classification model on the available data, using
three graph-invariant encodings:

1. Discrete, which uses the original data as node label (in this case the atom
type).

2. Metric, which uses the encoding described in subsection 2.5.1.

3. Topological, which uses the encoding described in subsection 2.5.2.

It is important to point out that even though the same data, understood as distinct
chemical compounds, was used in all three cases, the existence of conformational
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isomers for practically all the compounds involved resulted in more data being used
for the two encodings that depend on vector-valued data. A set of conformational
isomers is, as per the IUPAC definition (cf. [IUP14]), a set of chemical compounds
each with the same atomic constitution, but with a different arrangement of the
atoms in space for each compound; these multiple arrangements differ from one an-
other by rotations about formally single bonds. The number of such conformational
isomers, or conformers for short, depends on the molecule, but up to 10 were used for
each original compound. An equal atomic constitution yields the same graph repre-
sentation for all conformers; however, since the spatial coordinates of the atoms will
be different, we can expect that the vector labels used in the metric and topological
encodings will also be different, thus yielding different data points.

Before training all models, it was required to perform a so-called hyperparameter
optimization for the two vector encodings, which depend on the following parame-
ters:

• Metric: k, the number of nearest nodes per category; and θ, the threshold
distance beyond which nodes are not considered any more.

• Topological: Dmax, the maximum distance to be explored; and n, the number
of sampling intervals to be considered.

The result of this step were 162 classification models, one for each bioassay and
encoding combination. For each bioassay, the data was randomly split into 70%
train - 30% test. The training data was then used to find the best parameter values
for each encoding, and the models thus selected were then evaluated (using the
ROC measure) on the test data. Figure 3.1 shows a summarized version of the
distribution of performance measures for all three encodings.

Figure 3.2 shows a scatterplot with the results for the discrete encoding plotted
against both the metric and topological encodings, in different colours. The respec-
tive loess curves and a reference line at 45◦ are also displayed.

The average runtime for optimization of the models using the discrete encoding was
2.99 minutes; for the metric encoding it was 110.98 minutes; and for the topological
encoding it was 114.74 minutes. The difference sounds staggering, but one must re-
member that the amount of data is also very different: the discrete-encoded models
had on average 262 molecules each, while the vector-encoded models had to work
with 2371 molecules on average. An overview of this can be seen in Figure 3.3.
A linear model was fitted on each of the three cases, and the coefficients for the
independent variable (no. of molecules) can be seen in Table 3.2
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Figure 3.1.: ROC scores for the three encodings across the 54 datasets after per-
forming hyperparameter optimization.

Table 3.1.: Coefficients for dataset size in the linear models with runtime as depen-
dent variable.

Encoding Coefficient p-value

Discrete 0.006 2.21e-13
Metric 0.0431 2e-16

Topological 0.05235 2e-16
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Figure 3.2.: Scatterplots showing the pairwise comparison of ROC scores between
the three encodings. Also indicated is a loess curve for each, and a green reference
line at a 45◦ angle.
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molecules and total runtime for the hyperparameter optimization. Also pictured
on each panel is the least-squares regression line (green).
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3.2.3. Cross-validation Estimates

After this each of the 54 models for each encoding was again fitted and evaluated
on 10 different random splits, again using 70% of the data for training and 30% for
testing.
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Figure 3.4.: A summary of cross-validation estimates. The left panel shows box-
plots of all the repetitions over all datasets for each encoding; the right panel
shows estimated density plots of the same information.

The models were then separated into three categories based on the mean perfor-
mance registered by the model using the discrete encoding on every AID: the first
group was formed by models with an average ROC not larger than 0.66; the second
group included the models with an average ROC between 0.66 and 0.82; the final
group included all those models with an average ROC greater than 0.82. Figure 3.4
shows a summary of these results, as boxplot and a density estimate.

The results for the three encodings are compared for every AID in Figure 3.5, Figure 3.6,
and Figure 3.7.
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Table 3.2.: Coefficients for dataset size in the linear models with runtime as depen-
dent variable.

Encoding Min. 1st Qu. Median Mean 3rd Qu. Max.

Discrete 0.302 0.624 0.719 0.709 0.801 1
Metric 0.287 0.618 0.711 0.707 0.803 1
Topological 0.357 0.611 0.694 0.687 0.770 0.97
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Figure 3.5.: Three-way comparison of ROC scores for all the low performance mod-
els, i.e., all those where the discrete encoding obtained a score under 0.66. The
dots indicate the mean values, the horizontal bars indicate the mean ±1 standard
deviation.
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At this point a comparison was also made between the performance of the discrete
encoding and the two vector encodings, with respect to the different possible pa-
rameter values. These parameters belonged to one of two possible classes, the first
of which encompasses the two parameters corresponding to the label discretization
procedure, here called n and label_size (cf. algorithm 2). The second class corre-
sponds to the parameters specific to each of the vector encodings: for the metric
encoding the number of nearest neighbors k and the threshold distance θ (cf. algo-
rithm 3); for the topological encoding the number of intervals n and the maximum
distance Dmax (cf. algorithm 4).

The first two parameters are shown in figures Figure 3.8 and Figure 3.9. The re-
sults for both encodings are shown simultaneously since both use the same dis-
cretizer parameters. Other than a general performance advantage of the metric
encoding over the topological one, these plots reveal no clear dependence structure
of the performance on these parameters.
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Figure 3.8.: The difference in ROC scores, ROCdiscrete−ROCvector, is displayed for
each of the two vector encodings, and split according to the two possible values of
the label size, a parameter of the label discretization procedure.

For the parameters specific to each encoding a more detailed view is necessary. Fig-
ure Figure 3.10 shows the results for the number of nearest neighbors used in in the
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Figure 3.9.: The difference in ROC scores, ROCdiscrete − ROCvector, is displayed
for each of the two vector encodings, and split according to the two possible val-
ues of the maximum number of clusters, a parameter of the label discretization
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Figure 3.10.: Performance improvement of the metric encoding as a function of the
number of nearest neighbors, k.
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Figure 3.11.: Performance improvement of the metric encoding as function of the
threshold distance (θ).
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metric encoding. We can here point out the fact that a considerable cases where this
encoding showed better performance than the discrete encoding are concentrated in
the area with k ≤ 9.

Figure Figure 3.11 shows the difference in ROC values for each of the values as-
sumed by the parameter θ, that is, the threshold distance. Unlike the previous case
this parameter appears to have no clear influence on the algorithm’s performance.
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Moving on to the parameters for the topological encoding, figure Figure 3.12 shows
no clear relation between the values of the number of intervals used, n, except
perhaps that most of the good results appear either in the region with n ≤ 9 or
n = 19.
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Figure 3.12.: Performance improvement of the topological encoding as a function
of the number of intervals n.

Finally, figure Figure 3.13 plots the relation for the maximum distance explored by
the algorithm, Dmax, and performance. There is again no clear functional relation
present.
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Figure 3.13.: Performance improvement of the topological encoding as a function
of the maximum distance explored Dmax
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Chapter 3 Experimental Setup

A different hypothesis that was considered during the evaluation of the results was
the dependence of the vector encoding’s performance dependence on the average
size of the molecules contained on the data sets. A larger molecule, that is, one with
more atoms, would translate to a graph with more nodes. The reasoning behind this
reflects the idea that, since both vector encodings try to capture information about
the local structural features present in the graphs, larger graphs should increase
the information provided by the encoding.

Figure 3.14 shows scatterplots of molecular size and ROC score difference between
the discrete encoding and both vector encodings (metric and topological, respec-
tively). It is interesting to note that, despite the apparent plausibility behind this
hypothesis, these graphs show that it does not hold water. More dramatically, figure
Figure 3.14 would even suggest that performance actually decreases with increas-
ing molecule size for the metric encoding.
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Figure 3.14.: Performance improvement as a function of molecular size. The left
panel shows the metric encoding, the right panel shows the topological one.
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3.3. Graph Sampling

The final performance test was an evaluation of the predictive performance of the
sampled structures. The classification models were again produced by EDeN, while
all the graph grammar induction and graph sampling was done with the Python
package GraphLearn (cf. [CSs15]). Out of the 54 available bioassay datasets, a
subset was chosen for which the performance of either of the vector encodings was
“significantly” better than the that of the discrete encoding. Here we consider cases
with “significant” improvement to be those where the mean value of the ROC score
for the vector encoding lies at least one standard deviation above the mean of the
ROC score for the discrete encoding. This leaves a total of 7 datasets. For the
metric encoding they correspond to the bioassays with AIDs 2331, 493250, 602166,
and 651970 (cf. Figure 3.15). For the topological encoding they are the AIDs 2235,
602167, and 651563 (cf. Figure 3.16).
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Figure 3.15.: Datasets for which the mean performance obtained by the metric en-
coding was at least one standard deviation above the mean performance obtained
by the discrete encoding.

Regarding the nature of the datasets, we observe that AIDs 602166, 602167, 651970,
and 651563 come from luminescence-based bioassays. In our original dataset there
are 8 datasets which come from such bioassays, and figure Figure 3.17 shows the re-
sults for these. Interestingly the vector encodings outperform the discrete encoding
in almost every case.
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Figure 3.16.: Datasets for which the mean performance obtained by the topolog-
ical encoding was at least one standard deviation above the mean performance
obtained by the discrete encoding.
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Figure 3.17.: Three-way comparison for datasets from luminescence based
bioassays.
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We now go back to the 7 datasets selected due to the vector encodings presenting
a significant improvement. For each of these, the data are randomly split in 70%
training, 30% test data. Then, for increasing values of p, a random subset of p% of
the original training set is used as seed set to perform the graph sampling. Three
different classification models are then trained on the original data, on the gen-
erated samples, and on the original data plus the samples. This step is repeated
5 times, and the results for each are recorded. These are presented as learning
curves, which show the change in performance as a function of the proportion p of
the original training set used to train the models and generate the samples. The
best two results are shown here in Figure 3.18 (metric encoding) and Figure 3.19
(topological encoding). The results for the seven datasets are presented in Table 3.3
and Table 3.4. The important result here is an improvement of the model’s perfor-
mance when adding the sampled structures to the original training set, which is
used a proxy measure of their “quality”.
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Figure 3.18.: AID 493250, metric encoding

It is also possible to compare the number of components of the graph grammar for
each of the available encodings. As has been mentioned before, it is to be expected
that the vector-labelled encodings will produce richer grammars than the discrete
encoding, owing to the larger number of structures which are geometrically distinct
even if they are identical with respect to their atomic makeup. Figure 3.20 shows an
example where this hypothesis holds for the metric encoding; the same was found
to be true in general. However, grammars produced using the topological encoding
tend to exhibit only a slight increase in the number of structures. Figure 3.21 shows
an example of this.

Finally, Figure 3.22 presents an average over the 7 datasets of the total number of
samples produced, for increasing sizes of the seed set. The metric encoding again
produces a clearly larger number of samples than the discrete encoding; the topo-
logical encoding on the other hand produces less samples. As an explanation for
this we advance the hypothesis that, since this encoding does not keep track of the
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Table 3.3.: Discrete vs. metric encoding

% AID
2331 493250 602166 651970

Discrete Metric Discrete Metric Discrete Metric Discrete Metric

0.05 NA NA NA NA NA NA NA NA
0.2 NA NA NA NA NA NA NA NA
0.3 0.012 -0.018 NA -0.001 0.073 0.010 0.002 -0.030
0.4 -0.008 -0.002 -0.029 0.013 0.043 0.005 0.010 0.001
0.5 0.006 0.034 0.007 0.048 0.030 -0.012 -0.013 0.030
0.6 -0.013 0.023 0.020 0.034 -0.068 0.002 -0.047 0.013
0.7 -0.003 -0.002 -0.029 0.176 -0.044 0.028 0.089 -0.037
0.8 0 0 0.020 0.028 -0.022 -0.014 0 -0.008
0.95 0.025 -0.018 -0.027 -0.004 -0.025 0.006 -0.065 0.018

0.05 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.95

Dataset size (fraction)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
O

C
 A

U
C

AID651563, topological encoding

original+sample

original

sample

Figure 3.19.: AID 651563, topological encoding

Table 3.4.: Discrete vs. topological encoding

% AID
2236 602167 651563

Discrete Topological Discrete Topological Discrete Topological

0.05 NA NA NA NA NA NA
0.2 NA NA NA NA NA NA
0.3 0.002 NA -0.039 -0.024 -0.014 -0.002
0.4 0.001 -0.012 0.025 0.013 -0.035 0.021
0.5 -0.014 -0.003 -0.017 0.004 0.001 -0.007
0.6 -0.048 0.019 0 0.026 -0.064 -0.006
0.7 0.088 -0.005 0 0.044 0.014 0.010
0.8 0.003 0.015 0.066 -0.010 -0.101 -0.021
0.95 -0.068 0.021 -0.039 0.002 0.032 -0.006
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Figure 3.20.: Number of grammar components for several subsets of AID 493250
for the discrete and metric encodings.
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Figure 3.21.: Number of grammar components for several subsets of AID 651563
for the discrete and topological encodings.
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type of the atoms which make up the individual structures as the metric encoding
does, it is more difficult for the sampling algorithm to consistently produce feasible
structures. As can be seen in Figure 3.23, this distinction between the two vec-
tor encodings is maintained when we consider runtimes: the entire process takes
consistently longer for the metric encoding than for the topological one.
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Figure 3.22.: Evolution of the average number of samples generated for increasing
seed set sizes.
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ing for increasing training/seed set sizes.
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4. Discussion and Outlook

Perhaps the most important observation to be made about the results presented in
the last chapter is that, even if the three different methods presented here have
a similar performance on average, there are still interesting cases in which one
clearly outperforms the others. See, for example, the results for the bioassasys
651970, 1279, or 624120 in Figure 3.5; 602166, 743150, or 2236 in Figure 3.6. It
seems reasonable to attribute this to a specific structural properties of the informa-
tion which are effectively detected by the algorithms. A more careful study of this
remained beyond the scope of the present work.

Also of note is the low influence that the encoding and discretization parameters
appear to have on the model’s performance. Any future exploration of the methods
here described could therefore take as starting point either a proper subset of the
parameters used here, or obtain an entirely new parametrization. Thanks to the
fact that the methods described here can deal with arbitrary vector-valued labels in
graphs, the graph-invariant encodings presented here are in no way the only ones
that can be used. In particular, for the metric encoding, we would consider using
diverse similarity functions to transform the distances calculated by the algorithm.
For this work only the function f (d)= 1

1+d was used.

Regarding the topological encoding, it is doubtlessly possible to represent the in-
formation provided by a sequence of Vietoris-Rips complexes in a more concise and
elegant way than what was attempted here. It would also be possible to use a differ-
ent topological representation, e.g. a Čech complex, which is more computationally
expensive to obtain but in theory offers a more faithful topological representation
of the underlying space. Finally, it would also be worthwhile to include atom types
in the labels, which would likely increase the local resolution of the models.

As for the grammar induction and sampling, the current implementation does not
rely on parallelization. This no doubt limited the possibilities for exploring the dif-
ferent possible parameter configurations for both grammar and sampling. It would
also be desirable to have precise results regarding the sampling algorithm’s speed
of convergence, as well as the length of the necessary burn-in period as a function
of the initial conditions.
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A. BioAssay metadata

All the following information was obtained from the National Center for Biotechnol-
ogy Information (http://www.ncbi.nlm.nih.gov), the PubChem BioAssay Database
(http://pubchem.ncbi.nlm.nih.gov).

Name Counterscreen for inhibitors of LEDGF/p75-dependent integration: TR-FRET-
based biochemical high throughput dose response counterscreen assay to iden-
tify activators of HIV-1 Integrase multimerization

AID 1053171

Protein target integrase, partial [Human immunodeficiency virus 1]

# active subst. (conf.) 101 (700)

# inactive subst. (conf.) 128 (1141)

Name Cell-based high throughput confirmation assay for antagonists of neuropep-
tide Y receptor Y2 (NPY-Y2)

AID 1257

Protein target neuropeptide Y receptor Y2 [Homo sapiens]

# active subst. (conf.) 228 (2021)

# inactive subst. (conf.) 479 (4217)

Name Confirmation cell-based high throughput screening assay to measure STAT1
inhibition

AID 1263

Protein target signal transducer and activator of transcription 1 isoform alpha [Homo
sapiens]

# active subst. (conf.) 109 (988)

# inactive subst. (conf.) 90 (769)

Name Dose response cell-based screening assay for antagonists of neuropeptide Y
receptor Y2 (NPY-Y2)
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Chapter A BioAssay metadata

AID 1272

Protein target neuropeptide Y receptor Y2 [Homo sapiens]

# active subst. (conf.) 72 (633)

# inactive subst. (conf.) 47 (633)

Name Dose response counterscreen for neuropeptide Y receptor Y2 (NPY-Y2): Cell-
based high throughput assay to measure NPY-Y1 antagonism

AID 1279

Protein target neuropeptide Y receptor Y1 [Homo sapiens]

# active subst. (conf.) 74 (653)

# inactive subst. (conf.) 45 (371)

Name TR-FRET counterscreen for FAK inhibitors: dose-response biochemical high
throughput screening assay to identify inhibitors of Proline-rich tyrosine ki-
nase 2 (Pyk2)

AID 1641

Protein target PTK2B protein tyrosine kinase 2 beta [Homo sapiens]

# active subst. (conf.) 93 (732)

# inactive subst. (conf.) 118 (916)

Name Fluorescence counterscreen assay for potentiators or agonists of NPY-Y2:
Cell-based high-throughput screening assay to identify potentiators or ago-
nists of NPY-Y1.

AID 1651

Protein target neuropeptide Y receptor Y1 [Homo sapiens]

# active subst. (conf.) 84 (527)

# inactive subst. (conf.) 369 (3186)

Name Dose response, multiplexed high-throughput screen for small molecule reg-
ulators of RGS family protein interactions, specifically RGS19-Galphao.

AID 1884

Protein target G protein signalling regulator 19 [Homo sapiens]

# active subst. (conf.) 54 (436)
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# inactive subst. (conf.) 131 (1157)

Name Dose Response Confirmation Via Multiplex HTS Assay For Inhibitors Of
MEK Kinase PB1 Domains, Specifically MEK5 Binding To MEK Kinase 2
Wildtype

AID 1897

Protein target mitogen-activated protein kinase kinase kinase kinase 2 [Homo sapi-
ens]

# active subst. (conf.) 93 (443)

# inactive subst. (conf.) 93 (572)

Name Confirmation Dose Response Screen For Compounds That Protect HERG
From Block By Proarrhythmic Agents

AID 2121

Protein target putative potassium channel subunit

# active subst. (conf.) 115 (1049)

# inactive subst. (conf.) 123 (1051)

Name Late Stage Results From The Probe Development Effort To Identify Inhibitors
Of The Janus Kinase 2 Mutant JAK2V617F.

AID 2165

Protein target Janus kinase 2 (a protein tyrosine kinase) [Homo sapiens]

# active subst. (conf.) 158 (1411)

# inactive subst. (conf.) 69 (634)

Name hERG counter screen for compounds that inhibit/block inward-rectifying potas-
sium ion channel Kir2.1

AID 2236

Protein target putative potassium channel subunit [Homo sapiens]

# active subst. (conf.) 74 (352)

# inactive subst. (conf.) 246 (1861)

Name Fluorescence-based biochemical high throughput confirmation assay for in-
hibitors of Protein Phosphatase 5 (PP5).
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AID 2331

Protein target PPP5C protein [Homo sapiens]

# active subst. (conf.) 102 (849)

# inactive subst. (conf.) 360 (3152)

Name Confirmation Concentration-Response Assay for Activators of Human Mus-
cle isoform 2 Pyruvate Kinase: for Probe SAR

AID 2533

Protein target pyruvate kinase isozymes M1/M2 isoform M2 [Homo sapiens]

# active subst. (conf.) 86 (820)

# inactive subst. (conf.) 116 (858)

Name Mode of action - Automated patch clamp assay for KCNQ2 potentiators on
Retigabine insensitive KCNQ2 Mutant W236L cell line

AID 2558

Protein target potassium voltage-gated channel, KQT-like subfamily, member 2 [Rat-
tus norvegicus]

# active subst. (conf.) 91 (810)

# inactive subst. (conf.) 845 (7493)

Name QHTS Confirmation Assay For Inhibitors Of Bloom’s Syndrome Helicase
(BLM)

AID 2585

Protein target bloom syndrome protein [Homo sapiens]

# active subst. (conf.) 85 (669)

# inactive subst. (conf.) 55 (491)

Name QHTS Assay Multiplex Screening To Identify Dual Action Probes In A Cell
Model Of Huntington: Cytoprotection (Protease Relase)

AID 2669

Protein target huntingtin [Homo sapiens]

# active subst. (conf.) 81 (669)

# inactive subst. (conf.) 58 (489)
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Name TR-FRET-based biochemical high throughput dose response assay to identify
NR2E3 inverse agonists

AID 463256

Protein target photoreceptor-specific nuclear receptor [Homo sapiens]

# active subst. (conf.) 83 (778)

# inactive subst. (conf.) 31 (283)

Name Confirmation Concentration-Response Assay for Enhancers of SMN2 Splice
Variant Expression for Further Probe SAR

AID 488832

Protein target survival motor neuron protein isoform d [Homo sapiens]

# active subst. (conf.) 78 (779)

# inactive subst. (conf.) 31 (306)

Name Dose Response Confirmation Of UHTS Inhibitors Of Mouse Intestinal Alka-
line Phosphatase Using Human Intestinal Alkaline Phosphatase

AID 488876

Protein target Alkaline phosphatase, intestinal [Homo sapiens]

# active subst. (conf.) 55 (465)

# inactive subst. (conf.) 95 (788)

Name Dose Response Confirmation Of UHTS Inhibitors Of Mouse Intestinal Alka-
line Phosphatase Using Tissue Nonspecific Alkaline Phosphatase.

AID 488906

Protein target alkaline phosphatase, tissue-nonspecific isozyme isoform 1 precursor
[Homo sapiens]

# active subst. (conf.) 103 (870)

# inactive subst. (conf.) 78 (653)

Name Intein Inhibitors As Potential Tuberculosis Drugs

AID 489010

Protein target DNA recombination protein RecA [Mycobacterium tuberculosis H37Rv]
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# active subst. (conf.) 76 (659)

# inactive subst. (conf.) 61 (515)

Name Fluorescence polarization-based biochemical high throughput confirmation
assay for inhibitors of human platelet-activating factor acetylhydrolase 1B,
catalytic subunit 3 (PAFAH1B3)

AID 493032

Protein target platelet-activating factor acetylhydrolase IB subunit gamma [Homo
sapiens]

# active subst. (conf.) 118 (811)

# inactive subst. (conf.) 274 (2099)

Name MEX-5 Measured in Biochemical System Using Plate Reader -

2024-01_Inhibitor_Dose_CherryPick_Activity_3

AID 493250

Protein target Zinc finger protein MEX-5, Muscle excess 5- C. elegans

# active subst. (conf.) 121 (967)

# inactive subst. (conf.) 368 (2858)

Name SAR Analysis of small molecule inhibitors of Sentrin-specific proteases (SENPs)
using a Caspase-3 Selectivity assay

AID 504488

Protein target caspase-3 preproprotein [Homo sapiens]

# active subst. (conf.) 117 (946)

# inactive subst. (conf.) 150 (1366)

Name SAR Analysis of small molecule inhibitors of Sentrin-specific protease 6 (SENP6)
using a Luminescent assay

AID 504492

Protein target SUMO-1-specific protease [Homo sapiens]

# active subst. (conf.) 111 (952)

# inactive subst. (conf.) 156 (1360)
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Name Development of CDK5 inhibitors Measured in Biochemical System Using
Plate Reader - 2083-01_Inhibitor_Dose_CherryPick_Activity_Set2

AID 504545

Protein target CDK5 [Homo sapiens]

# active subst. (conf.) 88 (665)

# inactive subst. (conf.) 63 (508)

Name Fluorescence-based biochemical high throughput dose response assay for ac-
tivators of the calcium sensitivity of cardiac Regulated Thin Filaments (RTF)

AID 504698

Protein target troponin C, slow skeletal and cardiac muscles [Homo sapiens]

# active subst. (conf.) 76 (492)

# inactive subst. (conf.) 168 (1477)

Name Fluorescence-based cell-based high throughput confirmation assay for in-
hibitors of TLR9-MyD88 binding

AID 540250

Protein target toll-like receptor 9 [Homo sapiens]

# active subst. (conf.) 345 (2573)

# inactive subst. (conf.) 330 (2685)

Name Luminescence-based cell-based high throughput dose response assay for ag-
onists of heterodimerization of the mu 1 (OPRM1) and delta 1 (OPRD1) opioid
receptors

AID 588407

Protein target mu-type opioid receptor isoform MOR-1 [Homo sapiens]

# active subst. (conf.) 126 (963)

# inactive subst. (conf.) 103 (736)

Name Luminescence-based cell-based high throughput dose response assay for in-
hibitors of the Steroid Receptor Coactivator 3 (SRC3; NCOA3)

AID 602166

Protein target nuclear receptor coactivator 3 isoform a [Homo sapiens]
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# active subst. (conf.) 119 (954)

# inactive subst. (conf.) 110 (955)

Name Counterscreen for inhibitors of the Steroid Receptor Coactivator 3 (SRC3;
NCOA3): Luminescence-based cell-based high throughput dose response as-
say to identify inhibitors of the Herpes Virus Virion Protein 16 (VP16)

AID 602167

Protein target transactivating tegument protein VP16 [Human herpesvirus 1]

# active subst. (conf.) 84 (718)

# inactive subst. (conf.) 145 (1191)

Name TRFRET-based biochemical high throughput dose response assay for inhibitors
of the interaction of the Ras and Rab interactor 1 protein (Rin1) and the c-abl
oncogene 1, non-receptor tyrosine kinase (Abl)

AID 602181

Protein target ras and Rab interactor 1 [Homo sapiens]

# active subst. (conf.) 82 (713)

# inactive subst. (conf.) 148 (1269)

Name Turbidometric Biochemical Primary HTS to identify inhibitors of Protein
Disulfide Isomerase Measured in Biochemical System Using Plate Reader -
2137-01_Inhibitor_Dose_CherryPick_Activity

AID 602350

Protein target Prolyl-4 hydroxylase, beta polypeptide

# active subst. (conf.) 111 (753)

# inactive subst. (conf.) 322 (2793)

Name SAR Analysis Of Small Molecule Agonists NTR1 In A Image Based Assay
Set 3

AID 602356

Protein target neurotensin receptor type 1 [Homo sapiens]

# active subst. (conf.) 78 (670)

# inactive subst. (conf.) 74 (682)
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Name Dose response confirmation of uHTS small molecule inhibitors of Striatal-
Enriched Phosphatase via a fluorescence intensity assay

AID 602372

Protein target tyrosine-protein phosphatase non-receptor type 5 isoform a [Homo
sapiens]

# active subst. (conf.) 80 (746)

# inactive subst. (conf.) 86 (768)

Name TR-FRET secondary assay for HTS discovery of chemical inhibitors of anti-
apoptotic protein Bfl-1

AID 621

Protein target B-cell leukemia/lymphoma 2 related protein A1a [Mus musculus]

# active subst. (conf.) 89 (697)

# inactive subst. (conf.) 96 (740)

Name Chemical Optimization Of In Vitro Pharmacology And DMPK Properties Of
The Highly Selective MAChR 4 (M4) Positive Allosteric Modulator (PAM) Se-
ries With Greatly Improved Human Receptor Activity (HM4 Calcium Potency)

AID 623938

Protein target muscarinic acetylcholine receptor M4 [Homo sapiens]

# active subst. (conf.) 55 (198)

# inactive subst. (conf.) 40 (229)

Name Validation For Compounds That Inhibit KCNQ1 Potassium Channels On Au-
tomated Electrophysiology Assay

AID 624120

Protein target potassium voltage-gated channel subfamily KQT member 1 isoform
1 [Homo sapiens]

# active subst. (conf.) 87 (716)

# inactive subst. (conf.) 405 (3701)

Name Cytotoxicity (24 hours) Measured in Cell-Based System Using Plate Reader
- 2137-02_Inhibitor_Dose_CherryPick_Activity

AID 624285

59



Chapter A BioAssay metadata

Protein target Prolyl-4 hydroxylase, beta polypeptide

# active subst. (conf.) 72 (476)

# inactive subst. (conf.) 369 (3150)

Name Dose ResponseConfirmation of SKN-1 Inhibitor hits in a fluorescence ratio
assay - Set 2

AID 651563

Protein target SKiNhead family member (skn-1) [Caenorhabditis elegans]

# active subst. (conf.) 83 (589)

# inactive subst. (conf.) 282 (2022)

Name qHTS Assay for Iinhibitors of HIV-1 Budding by Blocking the Interaction of
PTAP/TSG101: Hit Validation

AID 651600

Protein target tumor susceptibility gene 101 protein [Homo sapiens]

# active subst. (conf.) 163 (979)

# inactive subst. (conf.) 221 (1772)

Name Counterscreen for inhibitors of the interaction of the lipase co-activator pro-
tein, abhydrolase domain containing 5 (ABHD5) with perilipin-5 (MLDP; PLIN5):
Luminescence-based biochemical high throughput dose response assay to iden-
tify inhibitors of Hepatocyte nuclear factor 4 (HNF4) dimerization

AID 651720

Protein target hepatocyte nuclear factor 4-alpha isoform b [Homo sapiens]

# active subst. (conf.) 133 (1216)

# inactive subst. (conf.) 101 (617)

Name Luminescence-based cell-based high throughput dose response assay for in-
verse agonists of the liver receptor homolog-1 (LRH-1; NR5A

AID 651970

Protein target nuclear receptor subfamily 5 group A member 2 isoform 2 [Homo
sapiens]

# active subst. (conf.) 86 (819)

# inactive subst. (conf.) 153 (1487)
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Name Late stage luminescence-based cell-based high throughput dose response as-
say for inverse agonists of the liver receptor homolog-1 (LRH-1; NR5A2)

AID 651976

Protein target nuclear receptor subfamily 5 group A member 2 isoform 2 [Homo
sapiens]

# active subst. (conf.) 54 (525)

# inactive subst. (conf.) 46 (460)

Name Dose response confirmation of small molecule inhibitors of Low Molecular
Weight Protein Tyrosine Phosphatase, LMPTP, in an orthogonal absorbance-
based assay

AID 652005

Protein target low molecular weight phosphotyrosine protein phosphatase isoform
c [Homo sapiens]

# active subst. (conf.) 73 (622)

# inactive subst. (conf.) 265 (2293)

Name Luminescence-based cell-based high throughput dose response assay for in-
hibitors of the orphan nuclear receptor subfamily 0, group B, member 1 (DAX1;
NR0B1): repression of SF-1 (NR5A1) activated StAR promoter by full-length
DAX-1

AID 687017

Protein target nuclear receptor subfamily 0 group B member 1 [Homo sapiens]

# active subst. (conf.) 55 (427)

# inactive subst. (conf.) 194 (1708)

Name QHTS For Inhibitors Of WRN Helicase: BLM Helicase Counterscreen For
WRN Inhibitors

AID 720503

Protein target Bloom syndrome protein [Homo sapiens]

# active subst. (conf.) 368 (2974)

# inactive subst. (conf.) 110 (802)
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Name QHTS For Inhibitors Of Bloom’s Syndrome Helicase (BLM): Helicase DNA
Unwinding Fluorescent Orthogonal Confirmatory Assay For SAR

AID 720555

Protein target Parkin [Homo sapiens]

# active subst. (conf.) 73 (680)

# inactive subst. (conf.) 45 (436)

Name SA12 PAX8: cytotoxicity COV362 Measured in Cell-Based System Using
Plate Reader - 7054-16_Inhibitor_Dose_DryPowder_Activity

AID 743144

Protein target Human Pax8, human paired-box protein

# active subst. (conf.) 78 (734)

# inactive subst. (conf.) 50 (490)

Name SA8-Pax8: cytotoxicity OV-90 Measured in Cell-Based System Using Plate
Reader - 7054-10_Inhibitor_Dose_DryPowder_Activity

AID 743149

Protein target Human Pax8, human paired-box protein

# active subst. (conf.) 89 (850)

# inactive subst. (conf.) 51 (494)

Name SA11 PAX8: cytotoxicity OVCAR4 Measured in Cell-Based System Using
Plate Reader -

7054-13_Inhibitor_Dose_DryPowder_Activity

AID 743150

Protein target Human Pax8, human paired-box protein

# active subst. (conf.) 75 (704)

# inactive subst. (conf.) 65 (640)

Name Dose-response biochemical assay for inhibitors of Focal Adhesion Kinase
(FAK)

AID 810

Protein target Focal adhesion kinase 1 (FADK 1) (pp125FAK) (Protein-tyrosine ki-
nase 2)
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# active subst. (conf.) 110 (863)

# inactive subst. (conf.) 100 (785)

Name Dose Response Confirmation For Small Molecule Inhibitors Of Eukaryotic
Translation Initiation

AID 855

Protein target eukaryotic translation initiation factor 4E [Mus musculus]

# active subst. (conf.) 78 (541)

# inactive subst. (conf.) 486 (4083)

Name Discovery of novel allosteric modulators of the M1 muscarinic receptor: An-
tagonist Dose-Response Counterscreen

AID 860

Protein target cholinergic receptor, muscarinic 4 [Rattus norvegicus]

# active subst. (conf.) 272 (1741)

# inactive subst. (conf.) 447 (3694)
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