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Abstract

The prediction of mRNA target sites is indisputably a big challenge in bioinformat-
ics. This investigate the in�uences of accessibility and structural stability at the RNAi
interaction site. Therefore, the unpaired probability and the positional entropy for �ve
di�erent datasets, with experimentally validated target sites are analysed. These datasets
each contain between 60 and 290 endogenous miRNA and synthesised siRNA interactions
targeting the mRNA of Homo sapiens, Arabidopsis thaliana and Photinus pyralis. The
focus is on the surrounding areas down- and upstream of the target site using a sliding
window approach.
Using statistical measurements comparing functional with non-functional interaction
sites, this work shows the existence of high accessible regions. For each of the datasets
two high accessible regions exist, surprisingly not directly next to the target site or
even within. The high accessible region downstream is the more signi�cant one, located
between 10 and 180 nucleotides downstream. The size of this region is at most 100
nucleotides for each dataset and for three of the datasets it was split into two. The
signi�cant upstream region is located between 170 and 80 nucleotides upstream. Sev-
eral statistical tests were applied to validate these results. The structural stability as
measured in this work, seems to have no in�uence on the ncRNA targeting in RNAi.
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1. Introduction

This thesis involves the analysis of speci�c characteristics of RNA-RNA interaction data
with the aim to help improve the current knowledge of the underlying mechanism and
thus to improve current prediction methods.
First the background in biology required to understand the speci�c problems of RNA-

RNA interaction prediction is introduced. This involves a general introduction to RNA
and RNA structure, followed by RNA-RNA interactions and the motivation for this work.

1.1. RNA Biology

Ribonucleic acids (RNA) are in most cases single stranded molecules, which consist of
a chain of nucleotides. There are four di�erent kinds of nucleotides in RNA, called
adenine (A), guanine (G), cytosine (C) and uracil (U). Each of these nucleotides consists
of phosphate, a ribose sugar, with its carbons enumerated from 1' to 5', and a base
attached to the 1' position. Henceforth, nucleotides are also simpli�ed to just bases. In
comparison to deoxyribonucleic acids (DNA), it is not only found in the nucleus, but also
in the cytoplasm of a biological cell.

1.1.1. Structure

The primary structure of an RNA is the sequence of the single nucleotides. The primary
structure is noted as a string with the nucleotides from the 5' to the 3' end. When
looking at a region of interest, bases to the direction of the 5' end are locaded upstream
and bases in the 3' direction downstream.
The secondary structure consists of the base pairings between the nucleotides of the

sequence. Base pairings are formations of hydrogen bonds between the bases of di�erent
nucleotides. The most common base pairs are A with U and G with C, called Watson-
Crick pairs. Moreover, other possible pairs exist, like G with U, which appear less
frequent. In this thesis, secondary structure and structure will be used synonymously.
A secondary structure is a set of pairs, with each nucleotide involved in at most one pair.

These pairs can build up di�erent structures as shown in Figure 1.1. For computational
reasons pseudoknots are forbidden in most cases. For the formal de�nition of secondary
structure and pseudoknots see Section 2.3.
The tertiary structure is de�ned by the three-dimensional structure of the RNA, which

consists of the atomic coordinates of the nucleotides. This tertiary structure is formed by
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1.1. RNA Biology 1. Introduction

Figure 1.1.: Primary, secondary and tertiary structure of RNA. For the de�nitions of
the di�erent secondary structure elements see, Section 2.3.

additional bonds between the nucleotides. Because the greatest energy contribution to
the stability of the tertiary structure originates from the secondary structure and because
of the di�culty of tertiary structure prediction, this form of RNA structure is ignored in
most prediction models and in this thesis.

Figure 1.1 visualises the di�erent kinds of RNA structure and secondary structure
elements.

1.1.2. General Function

In addition to the primary Central Dogma of Molecular Biology1, it is shown that RNA
not only acts as a carrier of genetic information, but also has several other functions.
This leads to a classi�cation of RNA molecules into two di�erent groups, the coding and
the non-coding RNA.

Messenger RNA (mRNA) is the coding RNA, this type of RNA is the product of
transcription from DNA that encodes for a protein. The nucleotide sequence is translated
into the amino acid sequence of a protein, called polypeptide chain, using transfer RNAs
and ribosomes [32].

There are also several other RNAs, called non coding (ncRNA), they perform a multi-
tude of functions that assist and regulate translation and transcription. Some examples
of ncRNAs are:

• Transfer RNA (tRNA) are short, 73 to 94 nucleotides long, RNA synthesised
in the nucleus. They transfer a speci�c amino acid to the mRNA and ribosome
complex for the assembly of the polypeptide chain and thus the protein [32].

• Ribosomal RNA (rRNA) is assembled into ribosomes and decodes mRNA into

1The primary Central Dogma of Molecular Biology says, that if information gets into a protein, it
cannot �ow back to DNA or RNA.
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1. Introduction 1.2. Requirements and Aims

amino acids and interacts with the tRNA and is also necessary to enable and
support the translation process [32].

• MicroRNA (miRNA) and small interfering RNA (siRNA) are very short, about
21 to 24 nucleotides long, ncRNAs responsible for post transcriptional gene regu-
lation called RNA interference [7].

• Small bacterial RNA (sRNA) are a class of 50-500 nucleotides long RNAs in
bacteria and are, amongst other functions, responsible for the regulation of gene
expression [6].

1.1.3. RNA-RNA Interaction and RNA Interference

RNA-RNA interaction is the interaction between two RNAs, in most cases the interac-
tion between a mRNA and a ncRNA. These interactions are nessesary for many gene
regulatory processes.
RNA interference (RNAi) is an example of post transcriptional gene regulation by

RNA-RNA interaction. By insertion of an RNA-induced silencing complex (RISC) and
the hybridisation of siRNA or miRNA with the mRNA, translation is repressed or mRNA
is degraded [34]. Figure 1.2 clari�es the di�erent biogenesis pathways or origins of siRNA
and miRNA, while displaying a generally similar function. SiRNA is often introduced by
viruses or in in vitro experiments, while miRNA is endogenous.
Another example for RNA-RNA interaction is directed by antisense RNA. In this

interaction the non coding strand of the DNA, directly opposite to the gene, is transcribed
into antisense RNA. This antisense RNA binds to the mRNA corresponding to it, i.e.
antisense to it. After this process the mRNA is no longer accessible for proteins and
ribosomes and cannot be translated.

1.2. Requirements and Aims

Basically three di�erent steps are required to be realised:

1. Gather experimentally validated interaction data, for di�erent species and types of
ncRNAs

2. Implement scripts to analyse data and evaluate them statistically

3. Analyse and discuss the results and search for similarities within the gathered data

With this approach this work statistically evaluates the accessibility and structural sta-
bility of RNAi. This evaluation is not only limited to the target site and its immediate
�anking area, but also regions down- and upstream of the target site. The aim is to
�nd characteristics with signi�cant and consistent results. These results should help to
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1.3. Motivation 1. Introduction

Figure 1.2.: Origin and function of siRNA and miRNA [34].

improve current knowledge of the underlying mechanisms of RNAi and eventually the
prediction of such speci�c RNA-RNA interaction sites.

1.3. Motivation

The e�cient prediction of RNA-RNA interactions, such as the exact target sites of
miRNA or siRNA is a challenge in bioinformatics. Recent research has shown that
miRNA are linked to human diseases, including cancer [30] and viral infections [35], e.g.
playing an anti-viral role [25]. Even drug addiction seems to be regulated by miRNA [18].
MiRNA acts also as a key regulator in various cell processes like cell proliferation, cell
death [5] and cell di�erentiation [10]. The ability to predict target sites on mRNA is
necessary to understand the complex post transcriptional gene regulation in cells.

While the general biological function of RNA-RNA interaction e.g., RNAi starts to
become clear, the prediction of valid target sites and the in�uences of di�erent structural
characteristics at the target site is far from being solved (see Section 3.2).

Although there is the possibility to predict target sites by experiments, these ap-
proaches are slow and expensive [19]. Furthermore, prediction of target sites within
developed algorithms still lead to many false positive target sites and has an overall low
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1. Introduction 1.4. Thesis Structure

sensitivity (see Section 3.1). Even though several researchers have tried to improve the
prediction of speci�c target sites by exploring the exact in�uence of accessibility and
other characteristics like positional entropy, the mechanism of how the ncRNA correctly
identi�es its target site is still not completely understood.

1.4. Thesis Structure

This chapter gives a short introduction about the biological background necessary which
is for this work. In the next chapter, the scienti�c background and bioinformatic algo-
rithms are introduced that are used to deal with the target structure characteristics in
RNA-RNA interactions. In the third chapter some recent researches are introduced, de-
scribing the current knowledge about RNA target site characteristics. Chapter 4 shows
the methods which are used to generate the results, displayed in Chapter 5. Afterwards,
Chapter 6 discusses the results and gives a brief outlook to possible further work.
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2. Scienti�c Background

For a more thorough understanding of the presented work, this chapter introduces some
necessary background knowledge in the bioinformatics of RNA secondary structure and
interaction prediction.

2.1. Secondary Structure Prediction

Although there are biophysical experimental methods to �nd out the secondary struc-
ture but they are too expensive for practical use. To be able to predict target sites on
mRNAs and for RNA-RNA interaction in general, it is �rst of all necessary to predict
the secondary structure of RNA. Secondary structure is a fundamental determinant of
the function of ncRNA, usually more important than the primary sequence [27]. This is
shown by the high amount of base-pair conservation across diverse species.

All RNA secondary structure prediction algorithms mentioned in this work are based
on the principles of dynamic programming1. Also all introduced algorithms can not
calculate pseudoknots, for the de�nition of pseudoknots see Section 2.3 De�nition 2.
Some programs do exists which are especially designed for the prediction of pseudoknots,
such as pknotsRG [37]. But these methods cannot compute base pair probabilities, as
introduced in Section 2.1.3, except for Dirks and Pierce [8], which is too slow in practice.

2.1.1. Energy Model

To predict RNA structure, an energy model for RNA, Gibbs Free Energy2, is de�ned.
When RNA structures are formed there is an associated loss of energy caused by the
formation of hydrogen bonds between the bases [32]. To be able to compute the energy
of a complete RNA structure, �rst it is necessary to get the energy of all substructures.
By experiments, the change of free energy due to the folding into a substructure, like
those introduced in Section 2.3, De�nition 2, starting from the unfolded sequence can be
identi�ed [21]. These thermodynamic parameters are used to calculate the free energy
for a complete RNA sequence by summing up the enthalpic and entropic terms for the
single substructures [11].

1A method of solving complex problems by breaking them down into small subproblems.
2Gibbs Free Energy G = H − TS, with H the enthalpy, T the temperature and S the entropy.
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2. Scienti�c Background 2.1. Secondary Structure Prediction

2.1.2. Minimal Free Energy

The structure with the minimal free energy (MFE) ∆G has been assumed to be the best
biologically structure in the past citemount04. The goal of the Zuker algorithm is to
compute this MFE structure.

Zucker uses dynamic programming to calculate the best substructures with a recursion
formula and stores them into two matrixes. One of them containing the optimal sub-
structure with unpaired ends and the other the best closed substructure, consisting of
an internal loop, a hairpin, a stacking region or a multiloop, with the lowest free energy.

The overall free energy is calculated by the sum over all structural elements and the
resulting structure is calculated by backtracking while one recursion represents the min-
imal energy of a general substructure the other one represents the minimal energy of a
closed substructure. For further information and exact de�nition read [45]. Programs
implementing this idea are e.g. mfold [45] and RNAfold [13,17].

2.1.3. Base Pair Probabilities

The MFE structure has been shown to not necessarily be the best biological structure
for a given RNA [29]. There can be a large number of di�erent secondary structures
that are close or even equal to the MFE structure in terms of free energy. Also in most
cases, due to the fact that RNA structure often conserves the function of the sequence,
the best structure is a stable one, which is not much in�uenced by the change of single
nucleotides [27].

The system of structures is called ensemble. To be able to calculate the base pair
probabilities e�ciently, it is assumed that the lower the energy of a structure the more
probable it is. Therefore, the di�erent structures are Boltzmann distributed.

So the probability of a given structure P with the free energy ∆G is calculated with
help of the Boltzmann factor and is

Pr[P |S] =
e
−∆G

kT

Z
. (2.1)

k is the Boltzmann constant, T the temperature, S the structure ensemble and Z the

partition function Z =
∑

S e
−∆G

kT . The probability of a base pair (i, j) is calculated by

Pr[(i, j)|S] =
∑

P3(i,j)

Pr[P |S] [29]. (2.2)

The recursion of the algorithm is very similar to Zuker's, but uses multiplication instead
of summation to calculate the probability of a base pair or a structure [29]. RNAfold [13]
also implements this approach, when given the option -p.

7



2.2. RNA-RNA Interaction Prediction 2. Scienti�c Background

2.1.4. Global and Local Folding

Global folding is the prediction of a secondary structure for the complete RNA. But there
are several restrictions, which make global folding for long RNA sequences pointless.

First of all, proteins and other elements like ribosomes disrupt the secondary structure
and additionally to that, the mRNA is partially unfolded to be ready for translation [41].
Also base pairs over a long distance are very improbable. Thus, the energy data gathered
for the minimum free energy structure is not very accurate to predict such structures [9].

One approach to avoid these problems is to use local folding. Local folding calculates
the secondary structure for a part of the sequence independent of the whole sequence.
E.g. the program RNAlfold [13] allows only interactions between base pairs with a
given local distance L to each other. While RNAplfold [4] calculates the structure with
independent and sliding windows of length W given a maximal distance between base
pairs L. It averages over all windows that include each base pair. This program also has
the positive side e�ect that it uses much less storage space and works faster than global
folding programs [4].

2.2. RNA-RNA Interaction Prediction

The methods to predict RNA-RNA interaction or target sites experimentally are very ex-
pensive. Therefore, methods predicting these interactions computationally are necessary
for all types of RNA-RNA interactions to pre-�lter possible interactions and reduce the
number of interactions that need to be experimentally veri�ed. Due to the fact that a
nucleotide can only pair with one other nucleotide3, the knowledge of secondary structure
is necessary to predict RNA-RNA interactions, to evaluate the in�uence of the previous
single structures before the interaction occurs. Figure 2.1 clari�es two main approaches.

2.2.1. Concatenation Approach

The concatenation approach for RNA-RNA interaction prediction is based on the idea to
connect both RNA sequences and to calculate their combined secondary structure. The
connection site is commonly �agged and handled as an internal loop with speci�c energy
parameters. The combined sequence is folded using a modi�ed version of RNA folding
algorithms. The folding of the concatenated sequences produces a combined structure
and therefore a possible interaction between both RNA sequences.

Due the limitation of the Zuker algorithm, this approach can not predict pseudoknots
between both RNAs, as shown in Figure 2.2 (B), but in nature this kind of structure is a
very common interaction between two RNA sequences [3]. Therefore, this method shows
serious �aws. Programs implementing this approach are e.g. PairFold and RNAcofold [3].

3Actually this is only true in the secondary structure, but not in the tertiary structure.
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2. Scienti�c Background 2.2. RNA-RNA Interaction Prediction

Figure 2.1.: Schematic comparison between the concatenation approach on the left
and the ensemble approach on the right [3].

2.2.2. Ensemble Approach

The ensemble approach is based on two di�erent steps, �rst the hybridisation energy
between both RNA sequences is calculated. This is the energy of the most favourable
hybridisation site, i.e. the hybridisation H(i, i′, k, k′) with the lowest free energy, be-
tween the RNA sequences. Then the accessibility, which is measured as the energy to
make the target site and the binding RNA single stranded, ED[i, i′] and ED[k, k′]4, at
the hybridisation site is calculated. By combining the energy contributions the most
favourable interaction is predicted, as

H(i, i′, k, k′) = Ehybrid + ED(i, i′) + ED(k, k′) [6]. (2.3)

The �rst step is implemented separately e.g. in RNAhybrid [24], but because it does
not consider the structure of the RNAs, and their internal base pairings, these results
are often inaccurate, as shown in Figure 2.2 (A).

Through the separate calculation of the two sequences, this approach overcomes the
limitations of the concatenation approach and allows pseudoknots between the RNA
sequences, but it only allows one interaction site. So all interactions interrupted by
intra-molecular base pairs cannot be predicted. Programs implementing this approach
are e.g. IntaRNA, RNAup and RNAplex [6, 13, 31]. Both approaches cannot predict
more complex interactions like double kissing hairpins, shown in Figure 2.2 (D) [3, 6].

2.2.3. Problem Speci�c

Problem speci�c approaches try to predict special kinds of RNA-RNA interactions, e.g.
miRNA-mRNA interactions or only interactions in one species. The approaches that

4For the formal de�nition of ED check Equation (2.4) in Section 2.3

9



2.3. De�nitions 2. Scienti�c Background

Figure 2.2.: (A) Biologically unlikely structure possibly predicted by RNAhybrid. (B)
External pseudoknots, which can not be predicted by the concatenation approach.
(C) Double interaction site, which can not be predicted by the ensemble approach.
(D) Double kissing hairpins [3].

predict speci�c interactions, mostly use the ensemble approach and add some special
features, speci�c to the binding mechanism.

The most problem speci�c programs focus on miRNA-mRNA interactions. For ex-
ample PicTar uses additionally to the thermodynamic model, cross-species comparisons
to �lter out false positives. Using a thermodynamic model, IntaRNA also handles seed
regions, as de�ned in Section 3.2.1. TargetScan searches for seed matches and expands
them. This program calculates the free energy and based on that assigns a score for each
possible binding site. For a detailed compare of miRNA prediction programs see [31].

2.3. De�nitions

This section gives some necessary formal de�nitions. First of all the de�nition of sec-
ondary structure and secondary structure elements, useful for the understanding of the
structure prediction algorithms, are given.

De�nition 1 (secondary structure)

Given a sequence S, a secondary structure is a set of pairs P = {(i, j) : Si and Sj

form a valid pair }.
Also a valid secondary structure must satisfy:

1. ∀(i, j) ∈ P : 1 ≤ i < j ≤ |S|

2. ∀(i, j), (i′, j′) ∈ P : (i = i′)↔ (j = j′)

3. (∀(i, k), (i′, k′) ∈ P : i < i′ → (k < i′) ∨ (k′ < k)) i.e. there are no pseudoknots

10



2. Scienti�c Background 2.3. De�nitions

De�nition 2 (Secondary structure elements)

Given a RNA structure P, we call (i, j) a pair i�, (i, j) ∈ P

• (i, j) ∈ P is closing a hairpin loop, i� ∀i < i′ < j′ < j : (i′, j′) /∈ P

• (i, j) ∈ P is a stacking, i� (i + 1, j − 1) ∈ P

• (i, j) ∧ (i′, j′) ∈ P are closing an internal loop, i�

1. i < i′ < j′ < j

2. (i, j) ∧ (i′, j′) ∈ P

3. ¬∃(k, l) ∈ P : between (i, j) and (i′, j′)

In most works accessibility is de�ned as the energy di�erence between the paired struc-
tures and the unpaired.

De�nition 3 (Energy di�erence [16,22])

The energy necessary to unfold a region a to b is:

EDa,b = Eall − Eunpaired
a,b (2.4)

Eall is the free energy of the ensemble of all structures, Eunpaired
a,b the free energy of

the ensemble of all structures with the complete substring unpaired.

With the knowledge of the ED(a, b) it is easy to calculate the probability that a substring
a to b is unpaired using the Boltzmann distribution.

De�nition 4 (Probability that a substring a to b is unpaired [16])

The Probability of a region a to b to be unpaired is:

PUa,b = eEall−Eunpaired
a,b /RT = e

EDa,b
RT (2.5)

R the gas constant and T the temperature. The size of the region a to b is called u.

Positional entropy shows the entropy of a base. While a low value indicates a reliable
prediction a high positional entropy stands for a high amount of alternative structures.

De�nition 5 (Positional entropy [13] )

The positional entropy of a base i is:

PEi = −
∑
i6=j

Pi,j · log(Pi,j)− P u
i · log(P u

i ) (2.6)

where P u
i = 1−

∑
i6=j Pi,j , the probability of i being unpaired.
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3. Related Work

This chapter introduces the current knowledge of target site characteristics for the dif-
ferent kinds of ncRNAs. It also discusses the open questions which remains.

3.1. Performance of RNA-RNA Interaction Prediction

As the development of special ncRNA-mRNA interaction prediction programs proceed,
the predictive power of these programs increase. By the implementation of special fea-
tures like seed regions and cross species comparisons, state of the art programs predicting
miRNA-mRNA interaction have a lower false positive rate. For example TargetScan and
PicTar have an estimated false positive rate between 22% and 30 % with a sensitiv-
ity about 80 % [31]. This value has originated from data of well explored species, like
Drosophila melangogaster or Homo sapiens.

Marín et al. [26] rate the prediction performance of state of the art programs as very
low. Hybridisation energy and total free energy at the target site have, although used in
most programs as a criteria to predict interactions, a very low predictive power. Actually
randomly taken regions with a matching seed site have a higher possibility to be a true
interaction site than PITA, IntaRNA, miRanda and RNAhybrid predictions, with their
default values. For both fruit �y and human genes. Even with optimised values the best
introduced prediction program only �nds 21 of 137 miRNA-mRNA interaction sites in
the �rst 1000 predictions or 48 interactions in the �rst 10000 predictions for the fruit �y.
The prediction performance at human genes is even worse [26].

3.2. In�uences of Accessibility

Although there is the general assumption that accessibility has an in�uence on RNA-
RNA interactions, the accurate in�uence is still not completely clear. In most cases it
is shown that higher accessibility leads to a higher repression for siRNA, miRNA and
sRNA [3,22,38]. The details of how to use accessibility for target site prediction remain
unclear.

There are some di�erent opinions about the minimal high accessible region and the
di�erent parameters to predict accessibility. Also in literature many di�erent terms have
been used for accessibility. The concrete in�uence of accessibility seems to be di�erent
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for diverse ncRNA classes. The in�uence and predictive power of the target site structure
and �anking regions are also unclear.

The following sections introduce some previous work done on various target sites,
considering their accessibility.

3.2.1. miRNA Target Sites

Target prediction in plants is fairly uncomplicated, because plant miRNAs bind to their
target with perfect or nearly perfect complementarity. For animal miRNA there seem to
be di�erent characteristics at the target site. The behaviour of a 7 to 8 nucleotide long
sequence starting from the 5' end of the miRNA, called seed, seems to be important.
Either a perfect 5' seed region or a seed region including mismatches with a long stretch
of base parings at the 3' end is characteristic for a target site [28].

Kertesz et al. found out that in D. melangogaster regions with a high ED at the target
site lead to high gene repression. The result shows, in this particular case, that there is
a high correlation between the accessibility for the whole target site and the degree of
regulation [22].

In contrast to this Hausser et al. showed that accessibility is not always a good
indication of a target site, as shown in Figure 3.1. Firstly, the accessibility of the seed
region seems to have only a minimal predictive power. Secondly, the accessibility for the
complete target site or the �anking region seems to be a good indication for a target site
only for some datasets; this could be an indicator of di�erent regulatory mechanism or
of poor data quality. [15]. This analysis is done on human data.

3.2.2. siRNA Target Sites

SiRNA are often designed to �t perfectly to a given mRNA target site, therefore not the
prediction of their target sites is the main problem, but the correlation between repression
e�ciency, speci�c sequence and structural characteristics. Thus, the prediction of e�cient
siRNA is the tricky task.

For siRNA target sites there also seems to be a correlation between stacking regions
and regulation e�ciency. Schubert et al. found out that gene expression is up to 60 %
lower in a region with fully unstacked nucleotides in comparison to a fully stacked target
region, using VsiRNA1 to silence the expression of the rat vanelloid receptor. There was
also evidence for a nearly linear correlation between the local free energy and the protein
expression, independent of the accurate target structure [38].

Using RNAplfold, Tafer et al. have shown that there is a signi�cant dependency
between silencing activity and target site accessibility. The most signi�cant results were
achieved with a window of 80 nucleotides and maximal span between base pairs of 40
nucleotides. These results emphasise the bene�ts of local over global structure prediction.
. The nucleotides at position 6-8 and 12-16 seems to work as a seed region. Also, due to
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Figure 3.1.: The predictive power of the di�erent structural characteristics [15].
Relevant for this work are the red marked characteristics (from top to bottom):
accessibility target site, accessibility �ank region and accessibility seed region.
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the high complementary between siRNA and mRNA the hybridisation energy seems to
be negligible [40].

3.2.3. sRNA Target Sites

A wide �eld of di�erent sRNA in bacteria exists and thus, the prediction of their target
sites seem to be even more complex and �exible than miRNA target prediction.
SRNA sequences can be between 50 and 200 nucleotides long with various functions

and therefore have di�erent requirements to their target site. In addition there is no
known single signi�cant feature. Although the precise requirements are unknown, it is
assumed that accessibility and mainly the hybridisation energy play a major role [3, 6].
Furthermore, the number of experimentally veri�ed interactions in this class of RNAs

is still very small.

3.2.4. Open Questions

Although many works state a high accessibility at the target site is a good indicator for
all kinds of RNA-RNA interactions. The exact in�uence is unclear, as many analyses
give confusing or contradictory results [15, 22, 38, 40]. Additional to that, a review rates
the accessibility of the �anking regions higher than the target site [40]. One of the open
questions is which region around the target site needs to have a high accessibility. And do
similarities between di�erent species or ncRNAs exists. So far, the in�uence of positional
entropy on RNA-RNA interactions and its predictive power has not been analysed at all.
Therefore, it is necessary to carry out further analysis of the in�uence of structural

characteristics on the target site on various datasets from multiple sources.
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4. Methods

After the related background information have been given in the previous chapters, this
chapter introduces the programs, the interaction data and the statistical measurements
used to carry out a methodical analysis of RNAi target site structural characteristics.
Also a description of the implementation is given.

4.1. Data

To analyse the characteristics of RNA-RNA interaction sites it is necessary to collect the
exact positions of validated interaction sites. Gathering experimentally validated target
sites was complicated, because validated interaction pairs in databases usually do not
have validated target sites within the mRNA. Often it is only known that the mRNA
is regulated by the given miRNA, trough analysing of the expression of the mRNA.
To validate the target site usually mutation experiments at this region needed to be
performed. SiRNAs are designed to �t to one exact target site, but it is not tested
whether the siRNA binds to other locations in the mRNA, although given the large
amount of sequence complementary, this is very unlikely.

The search for validated target sites results in the �ve di�erent datasets summarised
in Table 4.1 and described in the following sections. These datasets contain RNAi in-
teraction sites for siRNA and miRNA, three di�erent organisms far apart on a scale of
evolution and consists of many target genes.

4.1.1. Arti�cial siRNA Data

All arti�cial datasets have a quality measurement, calculated by the knockdown e�ciency
of the ncRNA as the average measured mRNA repression. These quality values were
normalised to values between zero and one with a linear interpolation:

f(x) =
x−min(X)

max(X)−min(X)
. (4.1)

Where max(X) and min(X) are the highest and lowest quality value within all obser-
vations X, respectively. Additionally, each dataset is split up into a functional and a
non-functional group, by taking a �xed amount of the best and the worst interactions
according to their quality value.
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name ncRNA species repression measure source

Tafer02 arti�cial siRNA Homo sapiens quality values [40]
Tafer03 arti�cial siRNA Homo sapiens quality values [40]
Fire�y arti�cial siRNA Photinus pyralis quality values [40]
AtmiR endogenous miRNA A. thaliana functional & non-functional [12]
Human endogenous miRNA Homo sapiens functional & random [44]

Table 4.1.: Names and details of the datasets used in this work.

Three datasets were extracted from the Tafer et al. paper [40], who in turn gained
the data from [20]. Their knockdown e�ciencies were veri�ed by analysing mRNA and
protein levels.

Tafer02 are arti�cial siRNAs synthesised to target against arbitrary regions of the
coding sequences of human genes. The targeted genes are MAP2K1, GAPDH, PPIB, and
LMNA. This dataset contains 294 interaction sites. The functional and non-functional
group contains the best respectively worst 70 interactions.

Tafer03 are also arti�cial siRNAs, originally synthesised to evaluate the performance
of an RNA interaction prediction program targeted against human genes. The targeted
genes are cyclophilin, ALPPL2 and DBI. Originally, the Tafer03 dataset also contains,
the Fire�y dataset, which here is considered separately because it is a di�erent organism.
After the seperation this dataset contains 270 interaction sites. The functional and non-
functional group contains the best respectively worst 70 interactions.

Fire�y is a subset of the original Tafer03 dataset containing 89 arti�cial siRNAs,
targeting the gene of �re�y (Photinus pyralis) luciferase. Due to the small size of the
overall interactions, the functional and non-functional group consists only of the best
and worst 30 interactions.

4.1.2. Endogenous miRNA Data

The endogenous miRNA data is divided into functional and non-functional interactions.
Because the human dataset does not contain non-functional interactions, random data,
as described in Section 4.1.3, is used as the non-functional group.

The dataset AtmiR consists of 110 functional and 114 non-functional miRNA target
sites in Arabidopsis thaliana, where the functionality is based on experimental evidence.
The functional set was taken from a cleavage analysis performed by German et al. [12].
They have performed deep sequencing to identify cleavage products of miRNA degrada-
tion of target mRNAs in two cell lines. A more in depth description of this dataset is
given in Appendix A.1.

The dataset Human consists of 67 functional miRNA target sites in 36 Homo sapi-
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ens mRNAs taken from miRecords1. Entries in miRecord were only taken if mutation
experiments were performed and, because of the incomplete version classi�cation of the
mRNAs, the target site could be located in the given mRNA. So the functionality and
the actual position of the target sites is based on mutational experiments [44]. As men-
tioned before, 67 random miRNA target sites in the same mRNA target sequences as the
non-functional group were generated.

4.1.3. Random Data

For each dataset, a corresponding set of random data was generated. To generate the
random data, for each interaction in each dataset a random position over the whole
unchanged mRNA with the same size as the original target site was chosen. The result
is a set of interactions with the same size as the original dataset within the same target
mRNA, so no structural bias of a di�erent sequence is introduced.

4.1.4. Data Format

Every dataset is stored in a �at �le, where each line contains one interaction. Each line
contains an ID, the target mRNA, the start and stop positions of the interaction in the
mRNA and a quality or functionality value, separated by tabs. The ncRNA ID is not
stored at all, because the sequence and structure of these is not considered. The mRNA
sequences are stored in separate �les in fasta format.

4.2. Statistical Methods

There are several statistical methods to evaluate whether the data shows signi�cant di�er-
ences between the characteristics at functional and non-functional interactions. Random
data, as introduced in Section 4.1.3, is used as a null model, to verify the signi�cance of
the results. This means the same test is repeated but only with the random data, where
you expect the results to be less signi�cant than the real data results. For further infor-
mation about statistical hypothesis test and correlation please, as given in this Section
read any standard statistic textbook or [23,39].

4.2.1. Correlation

The linear correlation is used to analyse the relationship between two continuous vari-
ables. Here the Spearman's rank correlation, which is a non-parametric measure of
statistical dependence between two variables, is applied. In this work, the correlation

1Extraced from http://mirecords.biolead.org/download.php, release 5 May 2010.
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coe�cient is used to evaluate the linear dependence between the quality value of the ar-
ti�cial siRNA datasets and the speci�c characteristic measure. The p-values2 calculated
by this correlation test are used to show the statistical signi�cance of the correlation
coe�cient.

4.2.2. Hypothesis Tests

Two-sample hypothesis tests are used to compare two sets of data. Almost always the
tests are using null-hypothesis tests, i.e. the tests are calculating the probability that
results as extreme as the given ones occur by chance. Because only two-sample tests are
introduced, the goal is to check if both sets of data are drawn from the same distribution.

The Two-sample Student's t-test assumes that the given data is approximately
normal distributed. Therefore to check if the null hypothesis can be rejected it is enough
to compare the means of the sets. And use the result to calculate the t-value [39]. With
a given t-value and the size of a dataset the p-value can be calculated or looked up in a
table.

The Wilcoxon signed-rank test which is equivalent to the Man-Whitney u-test is
a nonparametric test, making no assumption over the distribution of the data. Here
the sample values are ranked and the sum for each of the samples is calculated. After
normalisation the di�erence between the rank sums is calculated, which is called u-
value [39]. So in principle this test is a Student's t-test with a data ranking over the
combined samples.

The Kolmogorow-Smirnow test is a very stable nonparametric test. This test basi-
cally compares the di�erence between each value in the set. To reject the null hypothesis
this di�erence must not to exceed a given limit.

For this work one of the used measurements is the two-sample Student's t-test, because
this test implies normal distributed data points and this is however not always correct.
E.g. the boxplots3 in Figure 5.1 show not normal distributed but signi�cant results. The
Wilcoxon signed-rank test is used to calculate the signi�cance of a result. The u-values
are not used because they are not comparable between di�erent datasets. Therefore
the p-values calculated by the Wilcoxon signed-rank test are used as a measurement for
signi�cance and the t-values of Student's t-test are used to show the direction of the
di�erence. To minimise the possibility of statistic errors depending on a speci�c test,
the Kolmogorov-Smirnov test is used to check the results of the Student's t-test and the
Wilcoxon signed-rank. All tests introduced in this subsection are summarised with the
name hypothesis tests.

2P-value is the probability, assuming that the null hypothesis is true, of observing a test statistic at least
as extreme as the one that was actually observed. It describes a Type I error of the null hypothesis.

3Boxplots are introduced in the next Section
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Figure 4.1.: A horizontal boxplot showing the (A) median (B) lower and upper quan-
tile with an interquantile rage that encompasses 50% of the data (C) minimum and
maximum observation still within 1.5 times the interquantile range of the lower and
upper quartile (D) outlier, represented as a separate dot.

4.2.3. Data Summary

To visualise signi�cant results boxplots can be used. Boxplots are diagrams to summarise
data. They give a fast and easy overview of the distribution of the data. The spacing
between the di�erent parts indicates the degree of dispersion and skewness in the data.
In contrast to the pure p-value, boxplots give a visual overview of the nature of data and
the di�erence between the variables. Figure 4.1 shows a boxplot and de�nes the di�erent
parts of it.

4.3. Applied Programs

4.3.1. RNAplfold

RNAplfold4 [4] has been chosen as the secondary structure prediction program for the
mRNA. This prediction is necessary to calculate the structural characteristics in Section
4.4.2.

RNAplfold is used as the structure prediction program because of its bene�ts over
most other structure prediction programs. It calculates the local structure 5 and has a
relatively fast run time. Also RNAplfold can calculate the probability of a region u to
be unfolded, see De�nition 2.5 at Section 2.3.

4RNAplfold is provided as part of the Vienna Package 1.8.4 and can be downloaded at
http://www.tbi.univie.ac.at/�ivo/RNA/index.html.

5For the bene�ts of local folding check Section 2.1.4.
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The parameters for RNAplfold used in this work are u=10, to calculate the probability
that regions of 1 to 10 base pairs are unfolded, c=0 to disable the cuto� and to enable
the calculation of positional entropy. Window length W is set to 100 and the maximal
distance between base pairs L to 50, these values have proven to give good results when
a large variety of parameter combinations were tested [15]. Also the parameter d=2 is
used to specify a realistic energy model.

4.3.2. R

The calculation of the statistical measurements is done by the program R version 2.11.16

[36]. For the visualisation of the output R is extended by the library ggplot2 [43]. The
statistical measurements are explained in Section 4.2.

4.4. Analysed characteristics

Two main structural characteristics were analysed:

1. The probability that a subsequence or region of the target is single-stranded PU,
i.e. accessible to binding molecules.

2. The positional entropy PE, which measures the structural stability of a given nu-
cleotide. A high PE value means the nucleotides can be directly involved in many
alternative structures, a low value suggests that the given prediction is more likely
to be correct.

De�nition of PU and PE are given in Section 2.3.

4.4.1. Regions

For a thorough investigation of the target site, not only the interaction site itself is
assessed, but also the �anking regions to the left and the right of the target site.
The �anking regions are analysed by a sliding window approach. Therefore all se-

quences are aligned accordingly to the 3' end of the target site and this position is 0, as
shown in Figure 4.2. A window with the size w beginning at position i is called

Rw(i) = S(i, i + w). (4.2)

S(i, i + w) is a subsequence from i to i + w. Each window is plotted at position i,
where i represents the leftmost border of the subsequence, i.e. the 3' end as shown in
Figure 4.2. The window R20(−20) corresponds to the interaction site, if this is exactly
20 nucleotides long. The sequences are analysed starting from Rw(−200) to Rw(+200).
To simplify matters this thesis Because the results of the separate target site were not
signi�cant, they were not considered.

6R can be downloaded at http://www.r-project.org/.
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Figure 4.2.: Visualisation for di�erent windows. The red rectangle marks the in-
teraction site, while the violet and green rectangles �ag R10(0) and R10(5). The
interaction site is six nucleotides long, i.e. R6(−6) corresponds to the interaction
site.

4.4.2. Accessible Regions

The accessibility of a region is de�ned as follows:

maxPUk,l(u) = max {PUa,b|a < b, a ≥ k, b ≤ l, b− a = u} (4.3)

minPUk,l(u) = min {PUa,b|a < b, a ≥ k b ≤ l, b− a = u} (4.4)

meanPUk,l(u) = mean {PUa,b|a < b, a ≥ k, b ≤ l, b− a = u} (4.5)

=
∑
a,b

a<b,a≥k
b≤l,b−a=u

PUa,b(u)
l − k + 1

Where k ≤ l and S(k, l) is the subsequence of S from position k to l.

The PU values are calculated with RNAplfold with u values from 1 to 10. The window
size for a region is set to 20 for the calculation of accessible regions. Figure 4.3 shows a
schematic approach for the calculation of the accessibility in these regions.
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Figure 4.3.: Schematic visualisation of the calculation of accessible regions. The grey
rectangle visualise the current window and the green lines are the di�erent calcu-
lated PU(a, b) values.

4.4.3. Structural Stability

The structural stability analysis was done in regions, analogous to accessibility:

maxPEk,l = max {PEa|k ≤ a ≤ l} (4.6)

minPEk,l = min {PEa|k ≤ a ≤ l} (4.7)

meanPEk,l = mean {PEa|k ≤ a ≤ l} (4.8)

=
∑

a
k≤a≤l

PEa

l − k + 1

Where k ≤ l and S(k, l) is the subsequence of S from position k to l.

The window size for a region is set to 5 for the calculation of structural stability.

4.5. Implementation

Several scripts were implemented for an automated calculation of the characteristics for
the di�erent datasets and regions. An overview of the scripts is given in Table 4.2.
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name input output function

create fasta �le of
mRNA se-
quences

PE and PU data over
complete sequences

calls RNAplfold and calculate
PE

calculate PE, PU and
interaction
data

characteristic results at
interaction sites for one
region

calculates characteristics of
one region for all interactions

test characteristic
results

boxplots and test re-
sults

calculates statistical hypothe-
sis tests and correlations with
R

plot test results plots of correlation or
hypothesis test results

plots the test results, di�er-
entiates between characteris-
tic, region and u

Table 4.2.: Overview over the function of the di�erent Perl scripts

Additionally, a wrapper script was implemented. The wrapper calls the scripts in the
right order. First calling the create script to predict the secondary structure, then for
each interaction �le and each region the calculate script is called, followed by the test
script. After all calculations for one dataset are done, the plot script plots the results.
Therefore all scripts support di�erent input and output �le names via parameter. The
test script has two calculation modes, one is calculating the correlation and the other
the hypothesis tests. Additionally the start and stop position of the window relatively
to the interaction sites can be given via parameters. Not used in this work but also
implemented is the support for di�erent secondary structure prediction parameters, like
window size, programs in the create script and the support for di�erent window sizes in
the calculate script. The implementation of these scripts is done in Perl 5.10.1.1.

4.6. Analysis Procedure

After collecting the data and bringing it into the format shown in Section 4.1.4 for
each interaction, all characteristics as described in Section 4.4.2 were calculated. This
procedure is repeated for each region described in Section 4.4.1, so from Rw(−200) to
Rw(+200) at a resolution of �ve nucleotides, i.e. the region is shifted 5 nucleotides for
each calculation. Figure 4.4 summarises the calculation of the results.

The results were separated for each dataset. For datasets with quality values, cor-
relation is used as the main test and statistical hypothesis tests for the functional and
nonfunctional subsets, to approve the correlation results.

For datasets without quality values, Student's t-test, Wilcoxon ranked sum test and
Kolmogorow-Smirnow test are used as the main tests, and correlation is used to approve
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Figure 4.4.: Diagram of the analysis. The red rectangles �ag three di�erent windows
and their corresponding window name. The blue lines visualise di�erent interactions.

the results. The combination of Student's t-test and Wilcoxon ranked sum test is chosen
to combine the pro�ts of both tests: the comparable t-values and the p-values from the
Wilcoxon ranked sum test which does not assume normal distribution. In both cases
random data as described in Section 4.1 is used to cross check the results as a statistical
null model. Results were stated as signi�cant if their p-value is below 0.01.
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5. Results and Discussion

The results generated using the methods explained in the last chapter are presented in
this chapter. Headed by a general overview of highly signi�cant regions the results for
the di�erent datasets and characteristics are described. All main tests are shown in full
length in Appendix A.

5.1. Accessible Regions

Figure 5.21 shows the �nal results of the analysis of accessible regions. The analysis was
done within u2 values from 1 to 10. But low u values between 1 and 4, produce very
inconsistent and noisy results. For u values between 6 and 10 the results do not vary
essentially. Therefore u=8 is picked for a more in-depth analysis.

All datasets have a high accessible region downstream and all sets, except Tafer02, a
weaker but still signi�cant high accessible region upstream; located between R20(−170)
and R20(−100), i.e. 170 to 80 nucleotides upstream to the 3' end of the target site. The
high accessible region downstream is located between R20(10) and R20(180), i.e. 10 to
180 nucleotides downstream. These region is for the AtmiR, Human and Tafer03 datasets
somehow split into two parts. Surprisingly the target site at approximately R20(−20)
shows no signi�cant results. In this regions the functional group has not only a higher
accessibility than the non-functional group, but also than as random target sites like the
t-values for the Human dataset show. These results are somehow supported by Hausser
et al. [15], their paper rates the predictive power of �anking regions higher than the actual
target site. Also Wang et al. [42] rate the accessibility up- and mainly downstream to
be more critical than at the actual target site. They predict that these are the regions
where the Argonaute protein binds.

MeanPU, maxPU and minPU show in most cases the same tendencies, if a broad
region has signi�cant results then mostly all accessibility measurements show signi�cant
results. The results with the highest signi�cance are mostly produced by maxPU or
minPU, while signi�cant meanPU results are more rare. This observation �ts to the
de�nition of the characteristics, due to averaging meanPU is not as pronounced for a
window of 20 nucleotides. Signi�cant minPU results represent a relative low frequency
of paired bases. While maxPU represents a region of size u with a high probability to be

1A detailed description of the plots is given in Appendix A.
2u is the number of bases to be unpaired for the unpaired probability PU.
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unpaired. Both are more likely to be extreme than the average over all PU within the
region.
AtmiR produces the highest amount of signi�cant results of all datasets. The highly

accessible regions are R20(−160) toR20(−150), R20(0) toR20(50) andR20(80) toR20(120).
The �rst downstream regions have the slightly higher signi�cant results. The best result
is shown in Figure 5.1 (a), with a Wilcoxon ranked sum test p-value ≈ 1.33 ∗ 10−11 at
R20(+20), i.e. 20 to 40 nucleotides downstream.
The most signi�cant region for the Human dataset is at R20(95) to R20(125). There are
also two less signi�cant regions from R20(−200) to R20(−190) and R20(175) to R20(185).
These weaker signi�cant regions can be a result of the fact that this dataset contains
interaction validated by di�erent experiments and therefore probably a higher amount
of noise.
Using the Tafer02 dataset only one broad region generates signi�cant results. R20(25)
to R20(35) has a signi�cant high accessibility. Altough this dataset shows lower level of
signi�cance, it shows a regions consistence with the other datasets, see Figure 5.1 (c).
TheTafer03 has three equally signi�cant high accessible regions, R20(−135) toR20(−105),
R20(35) to R20(65) and R20(95) to R20(110).
As the only dataset Fire�y has signi�cant low accessible regions. E.g. R20(−5), R20(85)
to R20(95) and R20(185) to R20(195), di�ering from the previous results this could be
caused by the small dataset with only one target gene and the largly overlapping target
sites. Additionally the high accessible regions R20(−175) to R20(−165) and R20(150) to
R20(155) are very small but highly signi�cant.
The results for regions with the lowest Wilcoxon ranked sum test p-values for each

dataset are shown as boxplots in Figure 5.1. To be able to produce boxplots for the
synthesised siRNA, datasets hypotheses tests used for validation are used.

5.2. Positional Entropy

The results for positional entropy are very inconsistent. As shown in Figure 5.3, signi�-
cant results do exists, but they are inconsistent both within a single dataset and between
all datasets. The only observable trend is that positional entropy may be lower for func-
tional interactions. Signi�cant low results are about 3.5 times more likely than signi�cant
high ones.
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Figure 5.1.: Boxplots, excluding outlier, of the most signi�cant hypothesis test results
for each dataset with u=8. Green (1) is the functional and red (2) the non-functional
group. P-values are taken from the Wilcoxon ranked sum test. All boxplots besides
(d) are scaled from 0.0 to 0.8, (d) is scaled from 0.0 to 0.04 as it shows a di�erent
measurement.

28



5. Results and Discussion 5.2. Positional Entropy

region: R20(x)

t−
va

lu
e 

or
 c

or
re

la
tio

n 
co

ef
fic

ie
nt

−2

0

2

4

6

−2

−1

0

1

2

3

4

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

−0.1

0.0

0.1

0.2

0.3

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

● ● ●

●

●

●

●
●● ●●

●●●
●

●

● ●

●
●

●

●
● ●

●

●

●

●

● ●

●●●
●

●

●

●
●

●

●
●

●
●●●

●
●●●

●

●

●
●

● ●

●●●
●
●

●

●●
●●

●
●

●●●

●

●
●●●

●
●●

●●●●●●
● ●●●

●●
● ●

●

●

●●● ●
●
●

●
● ●

●●●●
●

●

●

●

●

●

●●

●

●●

●

● ●●
●

●

● ●

●

●
●

●

●

−200 −100 0 100 200

01−
A

tm
iR

02−
H

um
an

03−
Tafer02

04−
Tafer03

05−
F

irefly

p−value
● 0.010

● 0.008

● 0.006

● 0.004

● 0.002

● 0.000

characteristic

● maximum

● mean

● minimum

Figure 5.2.: Results for PU with u=8, Student's t-test t-values on the x-axis and
Wilcoxon signed-rank test p-values indicated by the size of the dots for 1 and 2 and
Spearman's rank correlation coe�cient on the x-axis and p-values indicated by the
size of the dots for 3 to 5. The y-axis shows the position relative to the 3' end of the
target site.
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Figure 5.3.: Results for PE, Student's t-test t-values on the x-axis and Wilcoxon
signed-rank test p-values indicated by the size of the dots for 1 and 2 and Spear-
man's rank correlation coe�cient on the x-axis and p-values indicated by the size of
the dots for 3 to 5. The y-axis shows the position relative to the 3' end of the target
site.
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5.3. Statistical Evaluation of Signi�cance

To validate the signi�cance of the results, various statistical tests were applied as de-
scribed in Section 4.6. The di�erences between the hypothesis tests are marginal. Re-
gions showing signi�cant results for one of the hypothesis tests in most cases also show
signi�cant results in both other hypothesis tests. Some special properties of the tests are
e.g. that the Kolmogorov-Smirnov test generates more noisy results and the Student's
t-test generates more signi�cant results than the other tests. As an example, the results
for the di�erent tests are shown forAtmiR in Figure 5.4, the other results are not shown.
The veri�cation by correlation for endogenous datasets leads nearly to the same results

as the hypothesis tests, as can be seen in Appendix A.
The veri�cation of the synthetic datasets by hypotheses tests is more complicated.

While the tendency is always observable, the exact p-values are often weaker than the
original ones. The results are shown in Appendix A. Tafer03 and Tafer02 show good
results, the Fire�y dataset lacks in some originally signi�cant regions. This may be
caused by the small di�erence of interaction quality originating from the small amount
of interactions.

5.3.1. Null Model Tests

The null model tests , where only random target sites were tested, resulted in very few
signi�cant results. As p-values below 0.01 are taken to be signi�cant, random data is
estimated to give one signi�cant result every 100 tests. A single accessibility test for one
u value contains 81 tests, therefore about one signi�cant results can be expected. On
average the null model tests have slightly more often signi�cant results. But without the
consistency shown if the real targets are tested.
Figure 5.5 shows the null model tests for all datasets for accessibility u=8 . The

complete null model tests are not shown.
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Figure 5.4.: Di�erent statistical measurements (Kolmogorov-Smirnov, Spearman's
rank correlation, Student's t-test, and Wilcoxon ranked sum test and their corre-
sponding p-values) for the AtmiR dataset, PU with u=8.
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Figure 5.5.: Null model tests with random target sites for PU with u=8, Student's
t-test t-values on the x-axis and Wilcoxon signed-rank test p-values indicated by the
size of the dots for 1 and 2 and Spearman's rank correlation coe�cient on the x-axis
and p-values indicated by the size of the dots for 3 to 5.

33



6. Conclusion and Outlook

Using the predicted secondary structure of mRNAs and several scripts the accessibil-
ity and structural stability of the mRNAs is calculated. These calculations are used
to compare the characteristics of functional and non-functional interactions and their
surrounding sequences. Five datasets, three synthesised siRNA datasets two of them
targeting human genes and one a �re�y gene and two endogenous miRNA targeting
human or Arabidopsis thaliana mRNA, are gathered and analysed.
The results indicate two or three high accessible regions for each dataset. These regions

are actually not directly next to the target site, but between 10 and 180 nucleotides
downstream or 170 to 80 nucleotides upstream. Although this work do not consider
multiple testing, the di�erent statistical measurements showing the same results con�rm
the presented results. Thus the goal to �nd characteristics which give signi�cant and
consistent results between di�erent types of ncRNAs and species was successful. But this
work could not �nd any in�uence of structural stability on the RNA-RNA interactions.
Due to time limitations some details are not checked in this work: The in�uences

of di�erent parameters for the secondary structure prediction, such as other values for
the window size or maximal distance between base pairs. Also the in�uence of di�erent
window sizes for the calculation of the regions are not considered at all, altough previous
work has shown no major di�erence in response to these factors. The measurement for
structural stability probably needs to be calculated di�erently, as the positional entropy
for each base pair is considered separately in this work. Maybe structural stability should
be calculated by considering local structures as a unit. Some statistical measurements
are also not tested on, for example the already mentioned multiple testing problem and z-
scores which indicate the distance of the means in comparison to the background. These
measurements could result in a clearer signal.
It was possible to show a signi�cant di�erence in the accessibility of certain regions,

but the actual values of accessibility at the target site were not characterised. Therefore
these initial results can not yet be used as a �lter for predicted target sites, but �rst the
underlying biological mechanism behind these results needs to be understood. For this
further computational and especially experimental analyses are required.
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A. Appendix

The appendix is divided into three sections. The �rst and second are the tests results for
all datasets, the Figures A.1 to A.5 shows all correlation results. While the second part,
i.e. the Figures A.6 to A.10, shows all hypothesis test results. Every Figure contains
one dataset. The �rst 10 subplots are the PU characteristics and the u values 1 to 10.
The last subplot is the PE characteristic. The x-axis shows the di�erent regions R20(x)
respectively R5(x) for PE, between −200 and 200, relative to the 3' end of the target
site. While the y-axis shows the Spearman's rank correlation coe�cient or the Student's
t-test t-value, depending on the exact statistical test; the p-value is indicated by the
size of the dots. Only signi�cant result, i.e. results with a p-value below 0.01, have a
dot. The colours indicate the di�erent characteristics, maximal (red), mean (green) and
minimal (blue). Related to maxPU, meanPU and minPU respectively maxPE, meanPE
and minPE. For the �rst section always the complete dataset is used, for the second one
the functional and non-functional groups as described in Section 4.1 are used. The third
section is a detailed description of the AtmiR dataset, as given to me by my supervisor.
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Figure A.1.: Dataset: Human, correlation between calculated characteristics (see Sec-
tion 4.4) and quality, for all regions between R20(−200) and R20(200) (see Section
4.4.1).
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Figure A.2.: Dataset: AtmiR Correlation between calculated characteristics (see Sec-
tion 4.4) and quality, for all regions between R20(−200) and R20(200) (see Section
4.4.1).
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Figure A.3.: Dataset: Tafer02 correlation between calculated characteristics (see Sec-
tion 4.4) and quality, for all regions between R20(−200) and R20(200) (see Section
4.4.1).
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Figure A.4.: Dataset: Tafer03, correlation between calculated characteristics (see Sec-
tion 4.4) and quality, for all regions between R20(−200) and R20(200) (see Section
4.4.1).
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Figure A.5.: Dataset: Fire�y, correlation between calculated characteristics (see Sec-
tion 4.4) and quality, for all regions between R20(−200) and R20(200) (see Section
4.4.1).

XX



A. Appendix

region: R20(x)

S
tu

de
nt

's
 t−

te
st

 t−
va

lu
e

−2

0

2

4

6

−2

0

2

4

6

−2

0

2

4

6

−2

0

2

4

6

−2

0

2

4

6

−2

0

2

4

6

−2

0

2

4

6

−2

0

2

4

6

−2

0

2

4

6

−2

0

2

4

6

●
● ●

●●●●
●

●

●
●

● ● ●
●●

●

●

●
●● ●

●

●

●
● ●●

●● ●●
● ●

●● ●●

●

●

●

●
●●

●

●

●
●

● ●● ●●●
●

●●
●●

●● ●

●

●
●●

●

●●

●

●
●●

●

●● ●●● ● ●●●
●
●

● ●
●●● ●

●

●●●
●

●

●

●
●● ● ● ●●●●●

●
●

●
●● ●

●

●●●
●

●

●

●

●
●

● ● ●
●

●●
●

●
●

●

● ●●

●

●

●
●

●●●
●

●

●
●

●

●

●

●
●

●
●●●●

●●

●

● ● ●●
●

●

●

● ●
●●●

●
●

●

● ● ●

●

●

●

●
●● ●●

●●●
●

●
● ●

●●

●

●
● ●

●

●
●

●

● ●

●●●
●

●

●

● ●●
●
●

●● ●
●●●●●

●

●

●
●

●

●

●

●
●●

●
●

●
●●●

●

●

●

●●
●
●
●● ● ●●●●

●●
●

●
●

●●
●

●
●

● ●
●●●

●
●

−200 −100 0 100 200

1
2

3
4

5
6

7
8

9
10

Wilcoxon ranked sum 
test  p−value

● 0.010

● 0.008

● 0.006

● 0.004

● 0.002

● 0.000

characteristic

● maximum

● mean

● minimum

region: R5(x)

−4
−3
−2
−1

0
1
2
3

●● ●●
●

●

●

●
●

●●

●

● ● ● ●● ●●● ●

●

−200 −100 0 100 200

characteristic

● maximum

● mean

● minimum

Figure A.6.: Dataset: AtmiR, Student's t-test between the calculated characteristics
(see Section 4.4) of the functional and non-functional group, for all regions between
R20(−200) and R20(200) (see Section 4.4.1).
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Figure A.7.: Dataset: Human, Student's t-test between the calculated characteristics
(see Section 4.4) of the functional and non-functional group, for all regions between
R20(−200) and R20(200) (see Section 4.4.1).
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Figure A.8.: Dataset: Tafer02, Student's t-test between the calculated characteristics
(see Section 4.4) of the functional and non-functional group, for all regions between
R20(−200) and R20(200) (see Section 4.4.1).
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Figure A.9.: Dataset: Tafer03, Student's t-test between the calculated characteristics
(see Section 4.4) of the functional and non-functional group, for all regions between
R20(−200) and R20(200) (see Section 4.4.1).
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Figure A.10.: Dataset: Fire�y, Student's t-test between the calculated characteristics
(see Section 4.4) of the functional and non-functional group, for all regions between
R20(−200) and R20(200) (see Section 4.4.1).
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A.1. AtmiR dataset

The dataset AtMiR consists of 110 functional and 114 non-functional miRNA target sites
in Arabidopsis thaliana, where the functionality is based on experimental evidence.
The functional set was taken from a cleavage analysis performed by German et al. [12].
They have performed deep sequencing to identify cleavage products of miRNA degrada-
tion of target mRNAs in two cell lines: wild type col-0 and the mutant xrn4-/-. An
abundance of cutting points that lie within the reverse complement sequence of known
mature miRNAs are considered as evidence for a target site1. German et al. provide the
miRNA and the target mRNA accession numbers, the SBS signature containing half of
the miRNA recognition site, the cutting position in the cDNA, and the abundance of
SBS signatures found in the two cell lines. The following steps were performed to �lter
and extend this data to provide more detail about the the exact hybridisation of each
interaction. (1) All miRNA targets were removed that did not contain an SBS signa-
ture for both cell lines to maintain a high quality of the data. (2) Most of the miRNA
are found in more than one locus and therefore exist in di�erent variants that di�er in
sequence at the 3' end. Thus, a new entry was made for each variant(s) with identical
mature sequence(s). (3) To identify the target site on the mRNA, a BLAST [1] search
was performed with the reverse complement of each miRNA sequence. The best hits that
coincided with the given cutting points were used to identify the exact target site and its
position in the cDNA. (4) Finally, a prediction was made of the hybridisation between
miRNA and mRNA target site by IntaRNA [6]. Due to the fact that the two sequences
are largely complementary, these hybrid predictions should be fairly accurate.
It is a very di�cult task to gather a set of veri�ed non-functional miRNA target sites and
thus no datasets, large enough for a statistical analysis, exist so far. Most non-functional
sites found in the literature are due to mutation experiments and are therefore not native.
The task is to gather a set of potential target sites of known miRNAs that look func-
tional, but experimental evidence suggests that they are not. Therefore, the results from
the Target Search prediction method, which is part of the Web MicroRNA Designer
WMD3 [33], was used to predict potential target sites and these were �ltered according
to two criteria. (1) All mRNA targets given for each miRNA from the ASRP [2, 14]
database were removed and (2) the expression data given by the ASRP database was
used to delete those mRNAs from the set that showed more than 5 % knock down in the
dicer mutant dcl1-7 in comparison to the wild type col-0. Also all pairs were removed
that showed no expression of either the miRNA or the mRNA. For the GEO accession
numbers of the expression data, see Table A.1.

1Only includes target sites of miRNA that result in mRNA cleavage and not inhibition.
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A. Appendix A.1. AtmiR dataset

Table A.1.: GEO accession numbers for expression data from ASRP [2, 14]

Small RNA 454 sequencing

col-0 GSM154336
dcl1-7 GSM154361

Gene expression micorarrays

col-0 GSM47011, GSM47012, GSM47013, GSM47020,
GSM47021, GSM47022, GSM47049, GSM47050,
GSM47051

dcl1-7 GSM47023, GSM47024, GSM47025, GSM47026,
GSM47027
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