

CPSP and [applications](#page-41-0)

Martin Mann

[HP Models](#page-1-0)

[. . . the End](#page-38-0)

Optimal structure prediction in 3D HP models and applications

Martin Mann

Bioinformatics Group Albert-Ludwigs-University Freiburg

Why to tackle structure prediction?

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[CPSP](#page-8-0)

[Side Chains](#page-26-0)

[Proteinlike](#page-32-0)

 $Structure = Function$

One of the central questions

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[. . . the End](#page-38-0)

What is the functional fold?

>1HJM:A|PDBID|CHAIN|SEQUENCE LGGYMLGSAMSRPIIHFGSDYEDRYYRENM HRYPNQVYYRPMDEYSNQNNFVHDCVNITI KQHTVTTTTKGENFTETDVKMMERVVEQMC ITQYERESQAYYQR

⇔ ?

- What determines the structure? \bullet
- What drives folding?
- \bullet What distinguishes protein and random sequences?

Lattice proteins A common abstraction of proteins

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0) [CPSP](#page-8-0) [Side Chains](#page-26-0)

[. . . the End](#page-38-0)

complex interactions

energy function contact based pairwise potentials

Lattice proteins

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[CPSP](#page-8-0)

[Side Chains](#page-26-0)

[. . . the End](#page-38-0)

Energy function and lattice determine level of abstraction and comp. complexity.

> central assumption ✝

☎ ✆

Optimal structure ⇔ Functional fold

The HP model

- Martin Mann
- [HP Models](#page-1-0)
-
-
-
-
- [. . . the End](#page-38-0)
- Introduced by Lau and Dill (1989) in 2D-square
- Simplest lattice model
- Focus on hydrophobic forces \Rightarrow Hydrophobic or Polar monomers
- \bullet Energy = negated sum of HH-contacts
- \bullet Structures $=$ Self-Avoiding Walks
- \Rightarrow Optimal structure prediction is NP-complete (Berger&Leighton,1998)

Structures in the HP-Model

CPSP and [applications](#page-0-0) Martin Mann

Sequence HPPHPH

- [Side Chains](#page-26-0)
-
- [Proteinlike](#page-32-0)
-

Optimal structure prediction How to do for lattice proteins?

Martin Mann

[HP Models](#page-1-0)

. . .

[. . . the End](#page-38-0)

Exhaustive structure enumeration \Rightarrow yields optimal structures

 \Rightarrow restricted to short lengths

✎ NP-complete problem ✍ \Rightarrow let's try Constraint Programming !

Constraint Programming?

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[CPSP](#page-8-0)

[. . . the End](#page-38-0)

Constraint programming ...

- ... is a programming technique
- **....** describes what rather than how
- ... i.e. it is declarative and generic
- ... combines logic reasoning with search
- ... performs "intelligent" enumeration
- ... is for slaying NP-hard dragons

Constraint Programming? An Example . . . SAW enumeration

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[CPSP](#page-13-0)

Side Chains

. . . the End

The problem definition - "What is a solution?"

Constraint Satisfaction Problem (CSP)

$$
\bullet \ \Phi, \Phi, \Phi \in \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}
$$

• neigh $(0,2)$, neigh $(2,3)$

$$
\bullet \ 0 \neq \hbox{\bf 2}, \ 0 \neq \hbox{\bf 3}, \ \hbox{\bf 2} \neq \hbox{\bf 3}
$$

Automatically done by constraint solvers:

Solution is computed by guessing/search and reasoning **1** guess $\mathbf{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\begin{array}{c} 0 \ 0 \end{array} \end{array} \rightarrow \{ \begin{array}{c} \mathbf{2},\mathbf{3} \end{array} \} \neq \begin{array}{c} \begin{array}{c} \mathbf{0} \ \mathbf{0} \end{array}$ $\begin{array}{cc} 0 \ 0 \end{array}$ \wedge 2 \in $\{$ $\begin{array}{cc} (0 & 0 \ 1 \end{array}$ $\binom{0}{1}, \binom{1}{0}$ **2** guess $\mathcal{Q} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 1 \ 0 \end{pmatrix} \rightarrow \textcircled{3} = \begin{pmatrix} 1 \ 1 \end{pmatrix}$ $\binom{1}{1} \rightarrow$ solution found

Constraint Programming? An Example . . . SAW enumeration

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[CPSP](#page-13-0)

. . . the End

The problem definition - "What is a solution?"

Constraint Satisfaction Problem (CSP)

- $(0, 2, 3) \in \{ 0, 0 \}$ $\binom{0}{0}, \, \binom{0}{1}$ $\binom{0}{1}, \, \binom{1}{0}$ $\begin{pmatrix} 1 \ 0 \end{pmatrix}, \begin{pmatrix} 1 \ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- neigh $(①, ②)$, neigh $(②, ③)$

$$
0 \oplus 2
$$
, $0 \neq 3$, $0 \neq 3$

Automatically done by constraint solvers:

Solution is computed by guessing/search and reasoning **1** guess $\mathbf{0} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\begin{array}{c} 0 \cr 0 \end{array} \rightarrow \{\mathfrak{D},\mathfrak{D}\}\neq \begin{pmatrix} 0 \cr 0 \end{pmatrix}$ $\begin{array}{cc} 0 \ 0 \end{array}$ \wedge 2 \in $\{$ $\begin{array}{cc} (0 \ 1 \end{array}$ $\binom{0}{1}, \, \binom{1}{0}$ $\{ {1 \choose 0} \}$ **2** guess $\mathcal{Q} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $\begin{smallmatrix}1\0\end{smallmatrix}\rightarrow \textcircled{3}=\begin{smallmatrix}1\1 \end{smallmatrix}$ $\binom{1}{1} \rightarrow$ solution found

Constraint Programming Workflow

Constraint Satisfaction Problem (CSP)

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[CPSP](#page-8-0)

[. . . the End](#page-38-0)

Definition

A Constraint Satisfaction Problem (CSP) consists of

- variables $\mathcal{X} = \{X_1, \ldots, X_n\},\$
- **a** the domain D that associates finite domains $D_1 = D(X_1), \ldots, D_n = D(X_n)$ to X.
- **a** a set of constraints C.

A solution is an assignment of variables to values of their domains that satisfies the constraints.

Martin Mann

[CPSP](#page-8-0)

[Side Chains](#page-26-0)

[Proteinlike](#page-32-0)

[. . . the End](#page-38-0)

BUT:

✬

 \sim

Optimal structure prediction

 $\operatorname{\hat{I}}$

Optimization Problem

Constraint Optimization

CPSP and [applications](#page-0-0) Martin Mann

Definition

[HP Models](#page-1-0)

[CPSP](#page-8-0)

[. . . the End](#page-38-0)

A Constraint Optimization Problem (COP) is a CSP together with an objective function f on solutions. A solution of the COP is a solution of the CSP that maximizes/minimizes f .

Solving by Branch & Bound Search

Idea of B&B:

- **•** Search & Reasoning as for solving the CSP
- Whenever a solution s is found, add constraint "next solutions must be better than $f(s)$ ".

A First Constraint Model Formulation of the COP

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[CPSP](#page-8-0)

[. . . the End](#page-38-0)

☛ $\overline{}$ $S \in \{H, P\}^n$ HHPHPHPHP... **Optimal** \Rightarrow Structures

✟

✠

A COP for optimal structure prediction

Awful performance due to poor contact bounds

From a partial solution no good estimation of final HH-contacts

Anything else we can use? The H-core observation

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[CPSP](#page-8-0)

[Side Chains](#page-26-0)

[. . . the End](#page-38-0)

Optimal structures show (nearly) optimal H-monomer packings

⇐⇒

Optimal Structure Optimal H-core

Let's utilize H-cores for a new Constraint Approach!

CPSP and [applications](#page-0-0) Martin Mann [HP Models](#page-1-0) [CPSP](#page-8-0)

[. . . the End](#page-38-0)

What is an H-core?

H-cores in HP-models

- Corresponds to hydrophobic core in globular protein structures
- Set of H-monomer lattice positions
- Sequence independent
- \bullet Optimal = maximal $#$ HH-contacts

Central observation

If a structure contains an optimal H-core no better structure can be found.

m

Idea of the new Constraint Approach Optimal structure prediction solving CSPs

Idea of the new Constraint Approach Optimal structure prediction solving CSPs

The CPSP Approach

Constraint-based Protein Structure Prediction solving CSPs

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[CPSP](#page-8-0)

[. . . the End](#page-38-0)

Advantages of the new approach

- Solving CSPs more efficient than for COPs
- **•** Ensures optimality via H-core order (decreasing HH-contact number)
- Allows for calculation of all optimal structures (even suboptimal)

 \implies CPSP-approach by Backofen and Will (2006)

Questions to answer

- What CSP is formulated?
- How to obtain (optimal) H-cores?

The CPSP Approach

The Constraint Satisfaction Problem (simple version)

Input : \bigcirc Sequence $S \in \{H, P\}^n$, \bigcirc H-core h

CPSP and [applications](#page-0-0) Martin Mann

[CPSP](#page-8-0)

[Side Chains](#page-26-0)

[. . . the End](#page-38-0)

 \implies defines all SAWs with H-monomers (X_i) in H-core h

 \implies if h is optimal \rightarrow each solution is an optimal structure

How to obtain (optimal) H-cores The workhorses of the CPSP approach

CPSP and [applications](#page-0-0)

- Martin Mann
- [HP Models](#page-1-0)

[CPSP](#page-8-0)

-
-
-
- [. . . the End](#page-38-0)
- Optimal H-core calculation very hard
- **For 3D cubic & FCC solved via DP &** CP by (Backofen & Will, 2001)

BUT : Sequence independent !

- only size of importance
- create precalculated H-core DB !

n1=2

n2=6

n3=8

n4=4

The CPSP Approach A first summary

CPSP and [applications](#page-0-0)

- Martin Mann
- [HP Models](#page-1-0)
- [CPSP](#page-8-0)
-
-
-
- [. . . the End](#page-38-0)

O Utilize observation:

Optimal structures show (nearly) optimal H-cores

- **•** Precalculate (sub)optimal H-core database (sequence independent)
- \bullet For a given sequence S screen through appropriate H-cores in decreasing $#$ contacts order (Backofen&Will, 2006)
	- **•** for each formulate & solve a CSP until solution found
	- \bullet order ensures: first solution $=$ optimal
- Combine with symmetry breaking, distance measure, ...
- Easy to extend (lattice, side chain, ...)

CPSP-Tools

Tools for high-throughput studies in 3D HP models

CPSP and [applications](#page-0-0)

- Martin Mann
- [HP Models](#page-1-0)
- [CPSP](#page-8-0)
-
-
-
- [. . . the End](#page-38-0)
- \bullet C++ implementation of CPSP approach and other CPSP based methods (Mann et al., 2008)
- **•** For high-throughput usage
- Extremly fast (length < 100 within 1s)
- Available at www.bioinf.uni-freiburg.de/sw/cpsp
- NEW: CPSP-web-tools for online usage cpsp.informatik.uni-freiburg.de

CPSP-web-tools Online usage of CPSP-tools

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[CPSP](#page-8-0)

[Side Chains](#page-26-0)

[. . . the End](#page-38-0)

CPSP Tools - HPstruct Result

http://cpsp.informatik.uni-freiburg.de

CPSP and [applications](#page-0-0)

The CPSP Extension to Side Chain Models Optimal structure prediction

[Side Chains](#page-26-0)

[Proteinlike](#page-32-0)

[. . . the End](#page-38-0)

Idea : Only change CSP and keep CPSP approach

Input : \bigcirc Sequence $S \in \{H, P\}^n$, \bigcirc H-core h

The CPSP Extension to Side Chain Models First Results

CPSP and [applications](#page-0-0)

- Martin Mann
- [HP Models](#page-1-0)
-
- [Side Chains](#page-26-0)
-
-
- [. . . the End](#page-38-0)
- Slower but still fast (length 60 within seconds)
- \bullet Immense $\#$ of optimal structures (best so far in 3D cubic $HP^{28} = 48$) (none so far in 3D fcc $HP^{28} < 10^3)$
- HP energy model for complex lattice protein models insufficient!

The CPSP approach Applications

- Martin Mann
-
- [CPSP](#page-8-0)
- [Side Chains](#page-26-0)
-
-
- [. . . the End](#page-38-0)

CPSP Applications

- Optimal structure/energy prediction
- Degeneracy calculation
- Definition of proteinlike sequences
- Sequence design & Evolutionary studies
- \bullet . . . ?

Degeneracy of the HP model

CPSP and [applications](#page-0-0) Martin Mann

[HP Models](#page-1-0)

[Degeneracy](#page-29-0)

[. . . the End](#page-38-0)

Sequence HPPHPPPHP

- There can be many ...
- HP-model is degenerated
- Number of optimal structures $=$ degeneracy
- • Important for thermodynamic stability

Degeneracy via CPSP approach The HPdeg tool

CPSP and [applications](#page-0-0)

- Martin Mann
- [HP Models](#page-1-0)
-
-

[Degeneracy](#page-29-0)

[. . . the End](#page-38-0)

- CPSP allows for calculation of all optimal structures \implies degeneracy
- Even faster via new CP techniques (Will&Mann, 2006)
- CPSP also answers: "Is $deg(S) \leq d_{max}$?"

- Degeneracy is immense in 3D cubic HP model
- **•** Even higher in 3D FCC or side chain models

Log Solution Count

The CPSP approach Applications

- Martin Mann
- [HP Models](#page-1-0)
-
- [Side Chains](#page-26-0)
- **[Degeneracy](#page-29-0)**
-
- [. . . the End](#page-38-0)

CPSP Applications

- Optimal structure/energy prediction
- Degeneracy calculation
- Definition of proteinlike sequences
- Sequence design & Evolutionary studies
- \bullet . . . ?

The Abstraction Problem

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[Proteinlike](#page-32-0) Sequences

[. . . the End](#page-38-0)

The Problem

- No useful mapping of functional protein AA sequences to HP sequences due to abstractions
- **•** Random sequence will not show proteinlike behavior

 \overline{a} ✝ Definition of "proteinlike sequence" needed!

☎ ✆

What are Proteinlike Features?

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[Proteinlike](#page-32-0) **Sequences**

[. . . the End](#page-38-0)

What we want

- Thermodynamically stable structure (low degeneracy)
- Optimal structure $=$ target of folding ($=$ functional)
- \bullet Smooth energy landscape \rightarrow fast folder
- **Consider sequential assembly of proteins** (low co-translational energy barriers)

Results for 3D cubic HP^{27} (Mann et al., 2008)

- Only a few sequences are classified as proteinlike
- Used folding temperature kT is of high importance (artificial energy model)

Determining the Folding Temperature kT^f

- CPSP and [applications](#page-0-0)
- Martin Mann
- [HP Models](#page-1-0)
-
-
- [Proteinlike](#page-32-0) **Sequences**
- [. . . the End](#page-38-0)
- Via folding simulations
- Metropolis criterion: $e^{-\Delta G/kT}$ if $\Delta G > 0$
- Screen kT for kT^f
- kT^f is model specific
- **•** Example:
	- 3D cubic HP^{27} (deg=1)
	- Pull-moves (Lesh,2003)
	- a $kT^f \approx 0.3$

Filter for Proteinlike Sequences The Workflow (Mann et al.,2008)

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[Proteinlike](#page-32-0) **Sequences**

[. . . the End](#page-38-0)

Input : sequence set S_0

- ① Filter all sequences $S_1 = \{s \mid s \in S_0 \land deg(s) \le deg_{max}\}\$ \Rightarrow stable optimal structures
- \circledA Determine $k\mathcal{T}^{f}$ for random sample of S_{1}
	- $\forall_{\bm{s} \in \mathcal{S}_1}$: run m folding simulations
		- calculate successive run ratio
		- set threshold for good folder
		- \Rightarrow derive $\mathcal{S}_2 \subseteq \mathcal{S}^1$

 $\circled{3}$ Filter S_2 via chain-growth folding simulation \Rightarrow $S_3 = \{s \mid s \in S_2 \wedge E_{barrier}^{ctf} \leq E_{max}^{ctf}\} \Rightarrow$ low barriers

Output : proteinlike sequences S_3

Proteinlike Sequences in HP²⁷ 3D cubic

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[Proteinlike](#page-32-0) **Sequences**

[. . . the End](#page-38-0)

Results:

Utilities:

- CPSP-tools (Mann et al.,2008) cpsp.informatik.uni-freiburg.de
- LatPack-tools (Mann et al.,2008) www.bioinf.uni-freiburg.de/Software/

Sequence data:

o freely available at

www.bioinf.uni-freiburg.de/Data/

1000 short runs with 4000 steps good folder: hit rate $> 1\%$ ($\frac{10}{1000}$)

The CPSP approach Applications

- Martin Mann
- [HP Models](#page-1-0)
-
- [Side Chains](#page-26-0)
-
- [Proteinlike](#page-32-0) **Sequences**
- [. . . the End](#page-38-0)

CPSP Applications

- Optimal structure/energy prediction
- Degeneracy calculation
- Definition of proteinlike sequences
- Sequence design & Evolutionary studies
- \bullet . . . ?

Thanks to ...

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[. . . the End](#page-38-0)

Rolf Backofen Sebastian Will

Daniel Maticzka (ELL, LatPack) Cameron Smith (CPSP-web-tools) Mohamad Rabbath (CPSP side chain)

Rhodri Saunders (Oxford) Guido Tack (Saarbrücken)

Thanks for your attention !

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[. . . the End](#page-38-0)

Contact:

mmann[@]informatik.uni-freiburg.de

CPSP-tools

http://cpsp.informatik.uni-freiburg.de

Energy Landscape Library

http://www.bioinf.uni-freiburg.de/sw/ell/

Thanks for attention and see you in Freiburg !?!

Appendix

CPSP and [applications](#page-0-0)

Martin Mann

[Proteinlike](#page-32-0)

[. . . the End](#page-38-0)

Appendix

References and Further Reading

CPSP and [applications](#page-0-0)

Martin Mann

[HP Models](#page-1-0)

[. . . the End](#page-38-0)

CPSP-tools and approach

- CPSP-tools exact and complete algorithms for high-throughput 3D lattice protein studies Martin Mann, Sebastian Will, and Rolf Backofen, BMC Bioinformatics, 9:230, 2008.
- A constraint-based approach to fast and exact structure prediction in 3D protein models Rolf Backofen and Sebastian Will, Constraints, 11(1):5–30, 2006.
- CPSP-web-tools : a server for 3D lattice protein studies Martin Mann, Cameron Smith, Mohamad Rabbath, Marlien Edwards, Sebastian Will, and Rolf Backofen, Bioinformatics, 2009.

Proteinlike Sequences

- \bullet Classifying protein-like sequences in arbitrary lattice protein models using LatPack Martin Mann, Daniel Maticzka, Rhodri Saunders, and Rolf Backofen, HFSP Journal, 2:396, 2008.
- \bullet The energy landscape library a platform for generic algorithms Martin Mann, Sebastian Will, and Rolf Backofen, Proc. of BIRD'07, 217:83-86, OGC, 2007.

Constraint Programming

- Decomposition during search for propagation-based constraint solvers Martin Mann, Guido Tack, and Sebastian Will, arxiv, 2008.
- Excluding symmetries in constraint-based search Rolf Backofen and Sebastian Will, Constraints, 7:333–349, 2002.