

CPSP and applications Martin Manr

HP Models CPSP Side Chains Degeneracy Proteinlike

Sequences

...the End

Optimal structure prediction in 3D HP models and applications

Martin Mann

Bioinformatics Group Albert-Ludwigs-University Freiburg

Why to tackle structure prediction?

CPSP and applications

Martin Manr

HP Models

CPSP

Side Chain

Degenerac

Proteinlike Sequences

...the End

Structure = Function

One of the central questions

CPSP and applications

Martin Mann

HP Models

CPSP

Side Chain

Degeneracy

Proteinlike Sequences

...the End

What is the functional fold?

>1HJM:A|PDBID|CHAIN|SEQUENCE LGGYMLGSAMSRPIIHFGSDYEDRYYRENM HRYPNQVYYRPMDEYSNQNNFVHDCVNITI KQHTVTTTTKGENFTETDVKMMERVVEQMC ITQYERESQAYYQR

⇔ ?

- What determines the structure?
- What drives folding?
- What distinguishes protein and random sequences?

Lattice proteins A common abstraction of proteins

CPSP and applications

CPSP Side Chains Degeneracy Proteinlike Sequences

HP Models

...the End

monomers

structure space

complex interactions

energy function

contact based pairwise potentials

Lattice proteins

CPSP and applications

HP Models

CPSP

Side Chain

Degenerac

Proteinlike Sequences

...the End

Energy function and lattice determine level of abstraction and comp. complexity.

central assumption

Optimal structure \Leftrightarrow **Functional fold**

The HP model

- CPSP and applications
- Martin Mann
- HP Models
- CPSP
- Side Chains
- Degeneracy
- Proteinlike Sequences
- ...the End

- Introduced by Lau and Dill (1989) in 2D-square
- Simplest lattice model
- Focus on hydrophobic forces
 ⇒ Hydrophobic or Polar monomers
- Energy = negated sum of HH-contacts
- Structures = Self-Avoiding Walks
- ⇒ Optimal structure prediction is NP-complete (Berger&Leighton,1998)

Structures in the HP-Model

Sequence HPPHPH

CPSP and applications Martin Mann

n Mann

HP Models

- CPSP
- Side Chain
- Degenerac
- Proteinlike Sequences
- ...the End

Optimal structure prediction How to do for lattice proteins?

CPSP	and
applica	tions

Martin Mann

HP Models

CPSP Side Chai Degenera

. . .

- Proteinlike Sequences
- ...the End

Discrete structure space:

Exhaustive structure enumeration \Rightarrow yields optimal structures \Rightarrow restricted to short lengths

NP-complete problem ⇒ let's try Constraint Programming !

	3D-cubic lattice
n	# SAW(n)
0	1
1	6
2	30
3	150
4	726
5	3534
6	16926
7	81390
8	387966
9	1853886
10	8809878
11	41934150
12	198842742
13	943974510
14	4468911678
15	21175146054
16	100121875974
17	473730252102
18	2237723684094
19	10576033219614
20	49917327838734
21	235710090502158
22	1111781983442406
23	5245988215191414
	$> 10^{15}$

Constraint Programming?

CPSP and applications

Martin Mann

HP Models

CPSP

Side Chains

Degeneracy

Proteinlike Sequences

...the End

Constraint programming ...

- ... is a programming technique
- ... describes what rather than how
- ... i.e. it is declarative and generic
- ... combines logic reasoning with search
- ... performs "intelligent" enumeration
- ... is for slaying NP-hard dragons

Constraint Programming? An Example ... SAW enumeration

CPSP and applications

Martin Mann

HP Model

CPSP

Side Chain

Degenerac

Proteinlike Sequences

...the End

The problem definition - "What is a solution?"

Constraint Satisfaction Problem (CSP)

• ①,②,③
$$\in \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}$$

• neigh(1,2), neigh(2,3)

Automatically done by constraint solvers:

Solution is computed by guessing/search and reasoning guess $(1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \{ @, 3 \} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \land @ \in \{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \}$ guess $@ = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow @ = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rightarrow$ solution found

Constraint Programming? An Example ... SAW enumeration

CPSP and applications

Martin Mann

HP Models

CPSP

Side Chains

Degenerac

Proteinlike Sequences

...the End

The problem definition - "What is a solution?"

Constraint Satisfaction Problem (CSP)

• ①,②,③
$$\in \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \}$$

• neigh(1,2), neigh(2,3)

Automatically done by constraint solvers:

Solution is computed by guessing/search and reasoning **Q** guess $(1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \rightarrow \{ @, \Im \} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \land @ \in \{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix} \}$ **Q** guess $@ = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow (3) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rightarrow$ solution found

Constraint Programming Workflow

Constraint Satisfaction Problem (CSP)

CPSP and applications

Martin Mann

HP Models

CPSP

Side Chains

Degeneracy

Proteinlike Sequences

...the End

Definition

A Constraint Satisfaction Problem (CSP) consists of

- variables $\mathcal{X} = \{X_1, \ldots, X_n\}$,
- the domain D that associates finite domains $D_1 = D(X_1), \ldots, D_n = D(X_n)$ to \mathcal{X} .
- a set of constraints C.

A solution is an assignment of variables to values of their domains that satisfies the constraints.

CP	SP	an	d
appl	ica	tio	1

Martin Manr

HP Models

CPSP

Side Chain

Degeneracy

Proteinlike Sequences

...the End

BUT:

Optimal structure prediction

↥

Optimization Problem

Constraint Optimization

CPSP and applications Martin Manr

HP Models

CPSP

Side Chains

Degeneracy

Proteinlike Sequences

...the End

Definition

A Constraint Optimization Problem (COP) is a CSP together with an objective function f on solutions. A solution of the COP is a solution of the CSP that maximizes/minimizes f.

Solving by Branch & Bound Search

Idea of B&B:

- Search & Reasoning as for solving the CSP
- Whenever a solution s is found, add constraint "next solutions must be better than f(s)".

A First Constraint Model Formulation of the COP

CPSP and applications Martin Mann

HP Models

CPSP

Side Chain

Degeneracy

Proteinlike Sequences

...the End

 $S \in \{H, P\}^n \qquad \text{Optimal} \\ \text{HHPHPHPHP} \dots \implies \text{Structures}$

A COP for optimal structure prediction

Variables	:	one X_i for each S_i
Domains	:	$D(X_i) = \mathbb{Z}^3$
Constraints	:	$orall_{1\leq i < n}: \mathit{neigh}(X_i, X_{i+1})$ $(ext{chain})$
		$orall_{i eq j}:X_i eq X_j$ (self-avoidance)
Objective	:	"maximize number of HH-contacts"

Awful performance due to poor contact bounds

From a partial solution no good estimation of final HH-contacts

Anything else we can use? The H-core observation

CPSP and applications

Martin Mann

HP Models

CPSP

Side Chain

Degenerac

Proteinlike Sequences

...the End

Optimal structures show (nearly) optimal H-monomer packings

Optimal Structure Optimal H-core

Let's utilize H-cores for a new Constraint Approach!

CPSP and applications

What is an H-core?

H-cores in HP-models

- Corresponds to hydrophobic core in globular protein structures
- Set of H-monomer lattice positions
- Sequence independent
- Optimal = maximal # HH-contacts

Central observation

If a structure contains an optimal H-core no better structure can be found.

Idea of the new Constraint Approach Optimal structure prediction solving CSPs

Idea of the new Constraint Approach Optimal structure prediction solving CSPs

The CPSP Approach

Constraint-based Protein Structure Prediction solving CSPs

CPSP and applications

CPSP

Advantages of the new approach

- Solving CSPs more efficient than for COPs
- Ensures optimality via H-core order (decreasing HH-contact number)
- Allows for calculation of all optimal structures (even suboptimal)

 \implies CPSP-approach by Backofen and Will (2006)

Questions to answer

- What CSP is formulated?
- How to obtain (optimal) H-cores?

The CPSP Approach

The Constraint Satisfaction Problem (simple version)

CPSP and applications Martin Mann

Input :

HP Models

CPSP

Side Chains

Degenerac

Proteinlike Sequences

...the End

The CPSP CS	SP	
Variables	:	one X_i for each S_i
Domains	:	$D(X_i) = egin{cases} h & ext{if } S_i = H \ \mathbb{Z}^3 \setminus h & ext{else} \ (S_i = P) \end{cases}$
Constraints	:	$\forall_{1 \leq i < n} : neigh(X_i, X_{i+1})$ (chain)
		$orall_{i eq j}^{-}:X_{i} eq X_{j}$ (self-avoidance)

① Sequence $S \in \{H, P\}^n$, ② H-core h

 \implies defines all SAWs with H-monomers (X_i) in H-core h

 \implies if h is optimal \rightarrow each solution is an optimal structure

How to obtain (optimal) H-cores The workhorses of the CPSP approach

CPSP and applications

- Martin Mann
- HP Models

CPSP

- Side Chains
- Degeneracy
- Proteinlike Sequences
- ...the End

- Optimal H-core calculation very hard
- For 3D cubic & FCC solved via DP & CP by (Backofen & Will, 2001)

BUT : Sequence independent !

- only size of importance
- create precalculated H-core DB !

The CPSP Approach

- CPSP and applications
- Martin Mann
- HP Models
- CPSP
- Side Chains
- Degeneracy
- Proteinlike Sequences
- ...the End

- Utilize observation:
 - Optimal structures show (nearly) optimal H-cores
- Precalculate (sub)optimal H-core database (sequence independent)
- For a given sequence S screen through appropriate H-cores in decreasing # contacts order (Backofen&Will,2006)
 - for each formulate & solve a CSP until solution found
 - order ensures: first solution = optimal
- Combine with symmetry breaking, distance measure, ...
- Easy to extend (lattice, side chain, ...)

CPSP-Tools

Tools for high-throughput studies in 3D HP models

- CPSP and applications
- Martin Mann
- HP Models
- CPSP
- Side Chain
- Degeneracy
- Proteinlike Sequences
- ...the End

- C++ implementation of CPSP approach and other CPSP based methods (Mann et al., 2008)
- For high-throughput usage
- Extremly fast (length < 100 within 1s)
- Available at
 www.bioinf.uni-freiburg.de/sw/cpsp
- NEW: CPSP-web-tools for online usage cpsp.informatik.uni-freiburg.de

CPSP-web-tools Online usage of CPSP-tools

CPSP and applications

Martin Mann

HP Models

CPSP

Side Chain

Degeneracy

Proteinlike Sequences

...the End

CPSP Tools - HPstruct Result

http://cpsp.informatik.uni-freiburg.de

CPSP and applications

The CPSP Extension to Side Chain Models Optimal structure prediction

Martin Mann HP Models CPSP

Side Chains

Degeneracy

Proteinlik Sequences

...the End

Idea : Only change CSP and keep CPSP approach

Input : ① Sequence $S \in \{H, P\}^n$, ② H-core h

	••	
Variables Domains	one X_i for each S_i $D(X_i) \begin{cases} h & \text{if H} \\ \mathbb{Z}^3 \setminus h & \text{if P} \end{cases}$	X_i^b and X_i^s for each S_i $D(X_i^s) \begin{cases} h & ext{if H} \\ \mathbb{Z}^3 \setminus h & ext{if P} \\ D(X^b) = \mathbb{Z}^3 \setminus h \end{cases}$
Constraints	$orall : \textit{neigh}(X_i, X_{i+1}) \ orall : X_i eq X_j$	$ \begin{array}{l} \forall:\textit{neigh}(X^b_i,X^b_{i+1}) \\ \forall:X^{b,s}_i \neq X^{b,s}_j \\ \forall:\textit{neigh}(X^b_i,X^s_i) \end{array} $

The CPSP Extension to Side Chain Models First Results

- CPSP and applications
- HP Model
- CPSP
- Side Chains
- Degeneracy
- Proteinlike Sequences
- ...the End

- Slower but still fast (length 60 within seconds)
- Immense # of optimal structures (best so far in 3D cubic HP²⁸ = 48) (none so far in 3D fcc HP²⁸ < 10³)
- HP energy model for complex lattice protein models insufficient!

The CPSP approach Applications

- HP Models
- CPSP
- Side Chains
- Degeneracy
- Proteinlike Sequences
- ...the End

CPSP Applications

- Optimal structure/energy prediction
- Degeneracy calculation
- Definition of proteinlike sequences
- Sequence design & Evolutionary studies
- ...?

Degeneracy of the HP model

CPSP and applications Martin Mann HP Models

Side Chain

Degeneracy

Proteinlike Sequences

Sequence HPPHPPHP

- There can be many ...
- HP-model is degenerated
- Number of optimal structures = degeneracy
- Important for thermodynamic stability

Degeneracy via CPSP approach $_{\rm The\ HPdeg\ tool}$

CPSP and applications

- Martin Mann
- HP Models
- CPSP
- Side Chains

Degeneracy

Proteinlike Sequences

...the End

- CPSP allows for calculation of all optimal structures
 ⇒ degeneracy
- Even faster via new CP techniques (Will&Mann, 2006)
- CPSP also answers: "Is $deg(S) \le d_{max}$?"

- Degeneracy is immense in 3D cubic HP model
- Even higher in 3D FCC or side chain models

Log Solution Count

The CPSP approach Applications

- HP Models
- CPSP
- Side Chains

Degeneracy

- Proteinlike Sequences
- ...the End

CPSP Applications

- Optimal structure/energy prediction
- Degeneracy calculation
- Definition of proteinlike sequences
- Sequence design & Evolutionary studies
- ...?

The Abstraction Problem

CPSP and applications Martin Manr

HP Models CPSP Side Chains

Degeneracy

Proteinlike Sequences

...the End

The Problem

- No useful mapping of functional protein AA sequences to HP sequences due to abstractions
- Random sequence will not show proteinlike behavior

 \implies Definition of "proteinlike sequence" needed!

What are Proteinlike Features?

CPSP and applications

- Martin Mann
- HP Models
- CPSP
- Side Chains
- Degeneracy

Proteinlike Sequences

...the End

What we want

- Thermodynamically stable structure (low degeneracy)
- Optimal structure = target of folding (= functional)
- $\bullet~$ Smooth energy landscape $\rightarrow~$ fast folder
- Consider sequential assembly of proteins (low co-translational energy barriers)

Results for 3D cubic HP²⁷ (Mann et al., 2008)

- Only a few sequences are classified as proteinlike
- Used folding temperature kT is of high importance (artificial energy model)

Determining the Folding Temperature kT^{f}

- CPSP and applications
- HP Models CPSP
- Side Chains
- Degeneracy
- Proteinlike Sequences
- ...the End

- Via folding simulations
- Metropolis criterion: $e^{-\Delta G/kT}$ if $\Delta G > 0$
- Screen kT for kT^f
- kT^f is model specific
- Example:
 - 3D cubic HP^{27} (deg=1)
 - Pull-moves (Lesh,2003)
 - $kT^f \approx 0.3$

Filter for Proteinlike Sequences The Workflow (Mann et al., 2008)

CPSP and applications

- HP Models CPSP
- Degeneracy

Proteinlike Sequences

...the End

Input : sequence set S_0

- ① Filter all sequences $S_1 = \{s \mid s \in S_0 \land deg(s) \le deg_{max}\}$ \Rightarrow stable optimal structures
- ② Determine kT^f for random sample of S_1
 - $\forall_{s \in S_1} : \mathsf{run} \ m \text{ folding simulations}$
 - calculate successive run ratio
 - set threshold for good folder
 - \Rightarrow derive $S_2 \subseteq S^1$

③ Filter *S*₂ via chain-growth folding simulation ⇒ *S*₃ = {*s* | *s* ∈ *S*₂ ∧ *E*^{ctf}_{barrier} ≤ *E*^{ctf}_{max}} ⇒ low barriers

Output : proteinlike sequences S_3

Proteinlike Sequences in HP²⁷_<u>3D cubic</u>

CPSP and applications

Proteinlike Sequences

Results:

S_0	$\subset HP^{27}$	non-exhaustive
S_1	10,500	degeneracy = 1 (\approx 0.01%)
S_2	2447	good folder
S 3	605	proteinlike

Utilities:

- CPSP-tools (Mann et al., 2008) cpsp.informatik.uni-freiburg.de
- LatPack-tools (Mann et al., 2008) www.bioinf.uni-freiburg.de/Software/

Sequence data:

freely available at

www.bioinf.uni-freiburg.de/Data/

1000 short runs with 4000 steps good folder: hit rate > 1% ($\frac{10}{1000}$)

The CPSP approach Applications

- HP Models
- CPSP
- Side Chain
- Degeneracy

Proteinlike Sequences

...the End

CPSP Applications

- Optimal structure/energy prediction
- Degeneracy calculation
- Definition of proteinlike sequences
- Sequence design & Evolutionary studies
- ...?

Thanks to . . .

CPSP and applications

Martin Mann

HP Model

CPSP

Side Chain

Degenerac

Proteinlike Sequences

... the End

Rolf Backofen Sebastian Will

Daniel Maticzka (ELL, LatPack) Cameron Smith (CPSP-web-tools) Mohamad Rabbath (CPSP side chain)

Rhodri Saunders (Oxford) Guido Tack (Saarbrücken)

Thanks for your attention !

CPSP and applications

Martin Mann

HP Model

CPSP

Side Chains

Degeneracy

Proteinlike Sequences

... the End

Contact:

mmann[@]informatik.uni-freiburg.de

CPSP-tools

Energy Landscape Library

http://www.bioinf.uni-freiburg.de/sw/ell/

Thanks for attention and see you in Freiburg !?!

Appendix

CPSP and applications

HP Models

CPSP

Side Chain

Degeneracy

Proteinlike Sequences

... the End

Appendix

References and Further Reading

CPSP and applications

Martin Mann

HP Models

CPSP

Side Chain

Degeneracy

Proteinlike Sequences

... the End

CPSP-tools and approach

- CPSP-tools exact and complete algorithms for high-throughput 3D lattice protein studies Martin Mann, Sebastian Will, and Rolf Backofen, BMC Bioinformatics, 9:230, 2008.
- A constraint-based approach to fast and exact structure prediction in 3D protein models Rolf Backofen and Sebastian Will, Constraints, 11(1):5–30, 2006.
- CPSP-web-tools : a server for 3D lattice protein studies Martin Mann, Cameron Smith, Mohamad Rabbath, Marlien Edwards, Sebastian Will, and Rolf Backofen, *Bioinformatics*, 2009.

Proteinlike Sequences

- Classifying protein-like sequences in arbitrary lattice protein models using LatPack Martin Mann, Daniel Maticzka, Rhodri Saunders, and Rolf Backofen, HFSP Journal, 2:396, 2008.
- The energy landscape library a platform for generic algorithms Martin Mann, Sebastian Will, and Rolf Backofen, Proc. of BIRD'07, 217:83-86, OGC, 2007.

Constraint Programming

- Decomposition during search for propagation-based constraint solvers Martin Mann, Guido Tack, and Sebastian Will, arxiv, 2008.
- Excluding symmetries in constraint-based search Rolf Backofen and Sebastian Will, Constraints, 7:333–349, 2002.