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Preface

Modern Life Sciences strongly rely on computational methods. In the last decades we wit-
nessed an exponential growth of data available and to be handled by scientists. These ever
increasing demands power the research in bioinformatics, which is consequently a rapidly
growing discipline. Many of the computational problems faced by the bio-sciences can be
naturally formalized in constraint-systems over finite domains or reals. The contributions
to the WCB series of workshop of the last years, starting from 2005, provide an excel-
lent overview over recent approaches for tackling bioinformatics problems using constraint
methodology. Constraint techniques proved to be successful for a variety of problems. Some
of the discussed topics were sequence analysis, biological systems simulations, protein
structure prediction and docking, pedigree analysis, haplotype inference, and many others.

This year, we could select 7 strong workshop contributions out of 8 submissions. The
discussed topics will comprise the application of constraint-based methods to SNP selec-
tion, biosystems simulation, hidden markov models, haplotype inference, and protein struc-
ture prediction. The variety of topics and the continuing high interest in the workshop em-
phasize once more that constraint-based methods are a very valuable tool for bioinformatics
and promise significant advance in a broad application range.

Alessandro Dal Palù
Sebastian Will
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TagSNP selection using Weighted CSP and Russian Doll
Search with Tree Decomposition

D. Allouche, S. de Givry, M. Sanchez, T. Schiex

UBIA, UR 875, INRA, F-31320 Castanet Tolosan, France.
{allouche,degivry,msanchez,tschiex}@toulouse.inra.fr

Abstract. The TagSNP problem is a specific form of compression problem arising in
genetics. Given a very large set of SNP (genomic positions where polymorphism is
observed in a given population), the aim is to select a smallest subset of SNPs which
represents the complete set of tagSNP reliably. This is possible because strong corre-
lations existing between neighboring SNPs. Typically, besides minimizing the tagSNP
set size (mostly for economical reasons), one also seek a maximally informative subset
for the given size, generating different secondary criteria.
This problem, which is also closely related to a set covering problem, can be simply
described as a weighted CSP. We report here our experiments with human tag SNP
data using a recently designed WCSP algorithm combining the “Russian Doll Search”
algorithm with local consistency for cost functions and an active exploitation of the
problem structure, through a tree decomposition of the problem.

Introduction

In bioinformatics, uncertainty and variability are usually ubiquitous and combinatorial prob-
lems modelling biological objects or phenomenon usually involve a combination of a large
number of local uncertainties or correlations which must be incorporated in a global crite-
ria. It is therefore not surprising to see that graphical models (HMM, Bayesian nets, (condi-
tional) Markov random fields. . . ) are massively used in bioinformatics.

The constraint satisfaction problem and its implementation as constraint programming
languages represent a deterministic variant of graphical models which allows to represent
combinatorial problems on discrete variables. Optimization (if any) is often considered as a
second order target that can be reached by explicitly modeling a cost variable which is then
iteratively bounded until an optimum is reached. This however requires the use of global
constraints that cover all variables, thereby hindering all the problem structure.

In this paper, we consider the TagSNP problem, a specific form of lossy compression
problem arising in genetics. Given a very large set of SNP (genomic positions where poly-
morphism is observed in a given population), the aim is to select a smallest subset of SNPs
which represents the complete set of tagSNP reliably. This problem can be naturally de-
fined as a variant of the set covering problem. By modeling the problem as a weighted CSP
(or cost function network), we get a model which still offers opportunities to exploit the
problem structure described through a tree-decomposition of its graph.

Specifically, this enables the fruitful application of a recent algorithm [12] called “Rus-
sian Doll Search with Tree Decomposition” that exploits problem structure for solving cost
function networks. As the BTD algorithm [13], this algorithm is based on the identification

1



Fig. 1. The graph of a WCSP and its tree decomposition.

of conditionally independent subproblems, which are solved independently, using a lower
bound based on local consistency, and whose optimum is cached during Branch and Bound
search. The time complexity of the algorithm obtained is only exponential in the largest
subproblem size instead of the global problem size. These conditionally independent sub-
problems are called clusters ad form a tree. The intersection between two clusters, if not
empty, is called the separator between these two clusters (see Fig. 1 for an illustration).
Such a decomposition can be obtained by computing a so-called tree-decomposition of the
problem. The main novelty of our algorithm lies in the incorporation of a “Russian Doll
Search” like approach enabling the computation of stronger initial local bounds by induc-
tively solving a relaxation of each subproblem identified in the tree-decomposition.

The algorithm obtained, BTD-RDS, generalizes both RDS and other tree-decomposition
based algorithms such as BTD or AND-OR Branch and Bound. As BTD, it uses a re-
stricted dynamic variable ordering which must be compatible with the tree decomposition
exploited : a variable from a cluster cannot be instantiated before variables from its parent
cluster.

This algorithm has been applied to radio link frequency assignment problem instances
defined in the CELAR benchmark [2], closing a very hard frequency assignment instance
which has been open for more than 10 years. It has also been used to tackle a problem from
bioinformatics, defining a new benchmark for constraint-based approaches : the tagSNP
selection problem.

In this paper, we will present this problem with associated instances defining bench-
marks and the main results obtained in our experiments.

1 Modeling the TagSNP problem

TagSNP selection occurs in genetics and polymorphism analysis. Single nucleotide poly-
morphisms, or SNPs, are DNA sequence variations that occur when a single nucleotide
(A,T,C,or G) in the genome sequence of an individual is altered. For example a SNP might
change the DNA sequence AAGGCTAA to ATGGCTAA. For a variation to be considered as a
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SNP, it must occur in at least 1% of the population. There are several millions SNPs in the
3 billions nucleotides long human genome, explaining up to 90% of all human genetic vari-
ation. SNPs may explain a portion of the heritable risk of common diseases and can affect
response to pathogens, chemicals, drugs, vaccines, and other agents. The TagSNP problem
is a sort of lossy compression problem which consists in selecting a small subset of SNPs
such that the selected SNPs, called tag SNPs, will capture most of the genetic informa-
tion. The goal is to capture a maximally informative subset of SNPs to make screening of
large populations feasible [7]. From the combinatorial point of view the TagSNP problem
is equivalent to a set covering problem (NP-hard) with additional quadratic criteria.

By sampling a first relatively small population, it is possible to compute a link (correla-
tion) measure r2 between each pair of SNPs. A tag SNP is considered as representative of
another SNP if the two SNPs are sufficiently linked. The simplest TagSNP problem is to se-
lect a minimum number of SNPs (primary criteria) such that all SNPs are represented. This
is captured by the fact that the r2 measure between the two SNPs is larger than a threshold
θ (often set to θ = 0.8 [3]). We therefore consider a graph where each vertex is a SNP and
where edges are labelled by the r2 measure between pairs of nodes. Edges are filtered if
their label is lower than the threshold θ. The graph obtained may have different connected
components. The TagSNP problem then reduces to a set covering problem on these com-
ponents. This simplest variant has been studied in [1] where it is solved using the d-DNNF
compiler c2d with good results. A polynomial approach exists for simpler problems [6]

In practice the number of optimal solutions may still be extremely large and secondary
criteria are considered by state-of-the-art tools such as FESTA [10]. Between tag SNPs,
a low r2 is preferred, to maximize tag SNP dispersion. Between a non tag SNP and its
representative tag SNP, a high r2 is preferred to maximize the representativity. To optimize
these criteria, FESTA uses two incomplete algorithms, the simplest is called FESTA-greedy,
and it uses a simple reedy approach. The second, called FESTA-hybrid combined the greedy
approach with a limited exhaustive approach.

For a given connected graph G = (V,E), we build a binary weighted CSP with integer
costs capturing the TagSNP problem with the above secondary criteria. For each SNP i, two
variables is and ir are used. is is a boolean variable that indicates if the SNP is selected as a
tag SNP or not. The domain of ir is the set of neighbors of i together with i itself. It indicates
the representative tag SNP which covers i. For a SNP i, hard binary cost functions (with 0
or infinite costs) enforces the fact that is ⇒ (ir = i). Similar hard cost functions enforce
(ir = j) ⇒ js with neighbor SNPs j in G. A unary cost function on every variable is
generates an elementary cost U if the variable is true. The resulting weighted CSP captures
the set covering problem defined by TagSNP.

To account for the representativity, a unary cost function is associated with every vari-

able ir that generates cost when ir 6= i. In this case, the cost generated is b100.
1−r2i,ir

1−θ c. For
dispersion between SNPs i and j, a binary cost function between the boolean is and js is

created which generates a cost of b100. r
2
ij−θ
1−θ c when is = js = true The resulting WCSP

captures both dispersion and representativity. In order to keep these criteria as secondary,
we just use a large enough value for U (the elementary cost used for tag selection).

This problem is similar to a set covering problem with additional binary costs. Such
secondary criteria are ignored by [1]. Here, c2d yields a compact compiled representation
of the set of solutions of the pure set covering problem, but the number of solutions is so
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huge (typically more than billions) that applying the second criteria on solutions generated
by c2d would be too expensive. A direct compilation of the criteria in the d-DNNF does
not seem straightforward and would probably necessitate a Max-SAT formulation as the
authors acknowledge in their conclusion.

2 Experiments

The algorithms tested (BTD and RDS-BTD) have been implemented in toulbar2 C++
solver1. Note than when the tree decomposition used reduced to a single cluster, BTD is
equivalent to a Depth First Branch and Bound algorithm.

The min domain / max degree dynamic variable ordering, breaking ties with maximum
unary cost, is used inside clusters (BTD and RDS-BTD) and by DFBB. The dynamic vari-
able ordering heuristic is modified by a conflict back-jumping heuristic as suggested in [9].
EDAC local consistency is enforced [5] during search. Tree decompositions are built using
the Maximum Cardinality Search (MCS [11]) heuristic, with the largest cluster used as
root. A variable ordering compatible with the rooted tree decomposition used is used for
DAC enforcing [4].

All the solving methods exploit a binary branching scheme. If d > 10, the ordered
domain is split in two parts (around the middle value), else the variable is assigned to its
EDAC fully supported value or this value is removed from the domain. In both cases, it
selects the branch which contains the fully supported value first, except if a previous solution
is available (the corresponding value is used in this case). Reported CPU times correspond
to finding the optimum and proving its optimality.

The instances we considered have been derived from human chromosome 1 data pro-
vided by courtesy of Steve Qin [10]. Two values, θ = 0.8 and 0.5 have been tried. For
θ = 0.8, a usual value in tag SNP selection, 43, 251 connected components are identified
among which we selected the 82 largest ones. These problems, with 33 to 464 SNPs, de-
fine WCSP with domain sizes ranging from 15 to 224 and are relatively easy. Solving them
to optimality selects 359 tag SNPs in 2h37’ instead of 487 in 3’ for FESTA-greedy (21%
improvement) or 370 in 39h17’ for FESTA-hybrid (3% improvement, 15-fold speedup).

To get more challenging problems, we lowered θ to 0.5. This defined 19, 750 connected
components, among which 516 are not solved to optimality by FESTA. We selected the 25
largest one. These problems, with 171 to 777 SNPs have graph densities between 6% and
37%. They define WCSP with max domain size ranging from 30 to 266 and include between
8000 to 250, 000 cost functions. The decomposability of these problems, estimated by the
ratio between the treewidth of the original MCS tree-decomposition (without any cluster
merging, i.e. with smax = +∞) and the number of variables varies from 14% to 23%.

In theory, algorithms exploiting tree-decompositions are only exponential in the max-
imum cluster size and the ideal tree-decomposition that should be used is therefore a tree
decomposition minimizing the size of the largest cluster (also called the treewidth or in-
duced width of the problem). In practice however, when a Branch and Bound like approach
such as BTD is used, small separators are also attractive because the worst-case space com-
plexity of the algorithm is exponential in the separator size. Even if this space complexity
is usually far from being reached because of the pruning induced by lower bounds, small

1 http://mulcyber.toulouse.inra.fr/projects/toulbar2, version 0.8.
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Fig. 2. CPU-time and number of solved instances for different values of the maximum separator
threshold (smax).

separators are also attractive because the removal of large separators creates larger clusters
that gives more freedom to dynamic variable ordering. There is therefore a compromise to
reach : small clusters are desirable but large separators should be avoided. Starting from an
original tree-decomposition, it is always possible to reach a decomposition with a maximum
separator size below a given threshold smax by just merging any pair of clusters which has
a separator of size above smax [8].

All the problems have been tackled with an initial upper bound found by FESTA-greedy
on 2.8 Hz CPU with 32 GB RAM. To better show the importance of bounded separator size
(using smax), we considered values ranging from 0 (DFBB), 4, 8, 12, 24, 32 to +∞ for
both BTD and RDS-BTD. We report both the number of problems solved within a 2-hour
limit per instance and the total amount of CPU time used (an unsolved instance contributes
for 2 hours).

Using smax = 4, our implementation improves the compression ratio of FESTA-greedy
by 15% (selecting 2952 tag SNPs instead of 3477 for the 516− 13 solved instances). Note
that the differences in CPU time between BTD and RDS-BTD would increase if a larger
time limit had been used. From a practical viewpoint, the criterion of the TagSNP problem
could be further refined to include : sequence annotation information (e.g. preferring tag
SNPs occurring in genes), and measures between triplets of markers as proposed in [1]
(SNPs covered by a pair of tag SNPs). The good performances of RDS-BTD may allow to
tackle this more complex problem with realistic θ = 0.8.

Figure 3 presents the evolution of the ratio between the tree width and the problem
size for different values of smax. All instances (θ = 0.5) solved at least once during the
experimentation are shown in this graph.
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Fig. 3. Evolution of treewidth normalized by variable number for different maximum separator size
threshold smax.

Problems which are successfully solved (with an optimality proof) are materialized as
continuous line,while dashed lines represent failures. The instance 17034, which could be
solved only for smax = 4 is represented by a gray square.

The Figure 3 allows to materialize the 12 instances which could be solved for smax =
{4, 8}. This underlines the fact that the nature of each solved instance may be different
depending of the smax value. For example, instance 17034 is only solved for smax = 4,
which is balanced by the resolution of instance 14359, solved only on the interval 8 - 12 of
smax.. Overall, on the whole range of variation of smax, 13 instances are solved but only 12
can be solved for an optimal choice of smax = 4, 8. This may plead for an adaptive choice
of the parameter smax = 4, 8. Moreover, a significant decrease of the normalized treewidth
is often correlated with the occurrence of a successful resolution.

Indeed, for most of the tested instances, reflecting the structure of the problems, the
curves show an important decrease for smax ∈ {0, 8}, which is very likely one of the
significant events explaining the high number of successful resolution in this range. The
decrease of the treewidth is then lower. It gradually reaches (smax > 12), a plateau with a
gentle slope, asymptotically reaching the ratio corresponding to a full decomposition of the
problem (without cluster merging). In the experimentation, this area is often associated to
failure.

This behavior is also reflected in the resolution speedup. Considering for example in-
stance 15757, an optimal solution is found for smax = {4, 8, 12, 24} with respective cpu-
time of of 514, 7, 299 and 3810 seconds. Simultaneously, the tree width ratio varies from
0.63 for smax = 4 to 0.30 for smax = {8, 12} and then to about 0.2 for smax = 24. The
optimal resolution time occurs for smax = 8. Several instances follow a similar behavior.
Most of solved instances are optimally resolved for a specific smax value . This behavior
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follows very likely from the compromise between the gains provided by the decomposi-
tion and the losses related to a decrease in the freedom of choice during search in dynamic
variables ordering in smaller clusters.

3 Conclusion

In this paper , we specifically addressed the tagSNP selection problem, a variant of the cov-
ering problem coming from bioinformatics. Our WCSP model allows to take into account
additional criteria such as dispersion and representativity. The data used in our experimen-
tation is likely the largest data set available in the public domain. With a usual threshold
(θ = 0.8), our model provides good results. But the situation quickly become more chal-
lenging if less stringent (more artificial) filtering conditions such as θ = 0.5 are used. In the
near future, we intend to extend our study to include an integer linear programming model
solved using CPLEX.

Beside this, from the methodological point of view, this work underlines the fact that the
practical exploitation of tree decompositions to solve structured combinatorial optimization
problems is not straightforward. Our experiments show that, even on problems that have a
nice visible structure, it is often very profitable and sometimes crucial to restrict the max-
imum size of the separators of the decomposition used. Theory says that separator size
influences the space complexity of structure-based algorithms such as BTD and RDS-BTD
but in practice, the improvement in efficiency is mostly explainable by the added freedom
in variable ordering allowed by cluster merging, an observation consistent with JÃ c©gou et
al. conclusions [8].

Our current algorithm still leaves areas for improvements. A attractive direction would
be to try to design a dedicated heuristic allowing for dynamic adaptation of the maximum
separator size of the decomposition. This could be based on the specific structure of the
input instance and could be achieved, for a given decomposition, by analyzing treewidth
variations as a function of smax. Another more challenging direction would be to provide
decomposition algorithms aimed at producing small separators in the graph decomposition.

Acknowledgments This research has been partly funded by the French Agence Nationale de
la Recherche (STALDECOPT project).
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Abstract. We deal with the problem of modeling in sCCP, a stochastic extension
of concurrent constraint programming, biological systems with a dynamical compart-
mentalization. The basic idea is to exploit the constraint store to program a library of
functions implementing such functionalities. In order to simplify the code, we extend
the language with a primitive to probabilistically sample from a given finite distribu-
tion.

1 Introduction

Systems biology is changing the approach of biology, towards an integration of wet lab
experiments with mathematical modeling and computational analysis. This discipline, as
a byproduct, is giving new impulses to the development of mathematics of complex sys-
tems and of computational analysis techniques. One promising field, genuinely coming
from computer science, is the use of high level, concurrent languages (i.e. Process Alge-
bras [6,7]) to describe such systems and to generate automatically mathematical models.
Analysis techniques can be applied both at the syntactic and at the semantic level, and range
from static analysis to simulation and model checking.

Among process algebras, we have focussed on stochastic Concurrent Constraint Pro-
gramming (sCCP [2]), a stochastic extension of CCP [18], and studied its application as
a modeling tool for biological systems [4]. Our claim is that sCCP offers a powerful and
flexible framework for this task. Differently from classical process algebras used in biology,
like stochastic π-calculus, sCCP requires a modeling style in which the state of the system
is described as a set of constraints in the constraint store, while agents correspond to the
different interaction capabilities which can alter the system’s state.

The key ingredient is the constraint store itself, which can be manipulated in sophisti-
cated manners, by exploiting the simple fact that it can be programmed in a Prolog-like style.
As a consequence, by suitably defining predicates and constraints, we can tailor sCCP to
specific domains without changing the language itself. One example in this direction is the
modeling of complex biochemical networks described graphically by Molecular Interaction
Maps [1].
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An important issue in biology is that systems are highly compartmentalized and orga-
nized in a hierarchical manner: cells contain a wide variety of organelles and other substruc-
tures which are used to separate and spatially organize the activities. Such organization is
not static: there is a constant flow of material among those ambients, and the compartments
themselves move and reorganize dynamically. In order to deal with such crucial problems,
several extensions of process algebras have been proposed, like Bioambients [16], Brane
Calculi [5], and others [21]. The problem in extending process algebras is that different bio-
logical domains require different extensions, making difficult their integration into a unified
framework.
We take here a different direction, exploiting extensibility of sCCP: we will model dynamic
compartmentalization by describing the compartment structure in the constraint store and
by defining different agents corresponding to different actions: from local reactions, to flow
of material between compartments, to dynamic rearrangement of compartments. All this
can be done quite straightforwardly, although we will extend the language with another
primitive, allowing to perform instantaneous probabilistic choices. This simplifies quite a
lot the definition of the agents, especially the protocols to update the store.

The paper is organized as follows: in Section 2, we introduce sCCP and its extension.
In Section 3, instead, we show how to encode dynamical compartmentalization, discussing
a simple example. As we are in a preliminary stage, we still do not have a working im-
plementation, hence we cannot show simulation’s results. Finally, we draw conclusions on
Section 4.

2 Stochastic Concurrent Constraint Programming

Concurrent Constraint Programming (CCP [17]) is a process algebra which can be seen
as a concurrent extension of Prolog. Its definition is organized around two concepts: the
constraint store and the agents. The constraint store C is the repository of information and
is is able to perform computations, too. Informational units are the constraints, which are
interpreted first-order logical formulae, stating relationships among variables (e.g. X = 10
or X + Y < 7). Moreover, constraints of the store can be defined using the computational
machinery of Prolog [19,17].
Agents, instead, are the basic actors that modify the state of the constraint store by adding
new information (tell()) and by checking entailment of relationships (ask()). The commu-
nication mechanism among agents is therefore asynchronous, as information is exchanged
through global variables. Other basic operators are at disposal to define agents: non-deterministic
choice, parallel composition, procedure call, plus the declaration of local variables.

Using a CCP-like language to model the dynamics of biological systems requires to
store time-varying quantities [4], which can be modeled as stream variables, i.e. growing
lists with an unbounded tail.

The stochastic extension of CCP we are considering (sCCP [2,4])1 is obtained by adding
a stochastic duration to all instructions interacting with the constraint store C, i.e. ask() and
tell(). Each instruction has an associated random variable, exponentially distributed with
rate given by a function associating a real number to each configuration of the constraint
store: λ : C → R+. More precisely:

1 There are other proposed probabilistic extensions [10,15], which are however not suited to model
biological systems, as they do not have a notion of continuous time.
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Definition 1. An sCCP program is a tuple (A,D, C, init), where

1. A is the initial agent and D is the set of definitions, defined according to the following
grammar:

D = ε | D.D | p(X) : −A
A = 0 |M | local X.A | A ‖ A

M = π.G |M +M
π = tellλ(c) | askλ(c)

G = 0 | tell∞(c).G | choose(X,D,P ).G| p(Y) |M | local X.G | G ‖ G

2. C is the constraint store, which is closed by conjunction and provided also with a com-
putable entailment relation `.

3. init ∈ C is the initial state of the constraint store.

In the previous definition, tellλ(c) is the addition of constraint c to the store at store-
dependent rate λ, while tell∞(c) is the addition of c at infinite rate. Note that recursive call is
always guarded by a stochastic action, hence we cannot have an infinite unfolding in a single
time instant. The version of sCCP considered here differs from the standard one [2,4] by
the addition of a new basic construct, namely choose(X,D,P ). Essentially, it is a primitive
instruction which allows to choose an element from the finite set D (represented as a list)
with probability given by P (which is a list of rational numbers of the same size of D,
adding up to one). Moreover, choose(X,D,P ) is an instantaneous action. We pinpoint that
this instruction is similar to the one used in [10] to introduce probabilities in CCP.

The underlying semantic model of the language (defined via structural operational se-
mantic, cf. [2]) is a Continuous Time Markov Chain [13] (CTMC), i.e. a stochastic process
whose temporal evolution is a sequence of discrete jumps among states in continuous time.
States of the CTMC correspond to configurations of the sCCP-system, consisting in the cur-
rent set of processes and in the current configuration of the constraint store. The next state
is determined by a race condition between all active instructions such that the fastest one is
executed, like in stochastic π-calculus [14] or PEPA [12]. More specifically, there are two
transition relations, one dealing with instantaneous actions and one dealing with stochastic
transitions.

In [3,4] we argued that sCCP can be conveniently used for modeling a wide range of
biological systems, like biochemical reactions, genetic regulatory networks, the formation
of protein complexes, and the process of folding of a protein. In fact, while maintaining the
compositionality of process algebras, the presence of a customizable constraint store and
of variable rates gives a great flexibility to the modeler. Such features have been exploited
in [1] to provide a simple encoding of Molecular Interaction Maps (a graphic formalism to
describe complex combinatorial biochemical networks). In the next section we will show
how to describe a dynamical compartment structure.

3 Modeling Compartments in sCCP

In this Section we will discuss how to build sCCP models of biological system in presence
of compartments (called throughout also ambients). More specifically, we are interested in
describing dynamic compartments, which can be created, destroyed, and moved at run time.
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We will adopt here the “classical” reaction-centric modeling style [4], in which the
physical system (objects, ambient structure, etc) is described in the constraint store, while
agents model the different interactions that can modify the system’s state. As far as we
are interested in dynamics, all the quantities of the store that are subject to evolution in
time are modeled by stream variables. The description of each compartment requires some
information, concerned with its location, its shape, and its content.

– The location of an ambient is specified in terms of an inclusion relationship, hence
we have a hierarchy of ambients where ambients contain other ambients. Formally,
compartments are organized by inclusion in a tree structure. Additional information
can be added as well, like spatial coordinates or a neighborhood structure, but we do
not pursue this generalization at this stage. Neglecting spatial information essentially
means that we are assuming compartments to be homogeneously distributed in space.

– The shape of an ambient can be described at several levels of detail. Here we will
consider only the volume, which is needed in the modeling of biochemical reactions.

– An ambient can contain other ambients and several molecular species, which are de-
scribed and counted by (stream) variables.

Compartment description. The compartmentalization structure is described by suitable
predicates and stream variables of the constraint store. First of all, we assume a finite set
of different compartment types, like cells, organelles, vesicles, and so on, and a finite set of
molecular species.

We assume to have the following predicates in the store:

– compartment list(Type,Instances). This predicate contains the list of all compart-
ments (Instances) for each type (Type). We assume that each compartment is identified
by a unique name. This predicate is required to allow a rapid access to all compartments
of a given type.

– compartment(Name,Parent,Volume,Children). For each compartment (Name), we
store three stream variables: Parent contains the name of the parent ambient (which may
be NULL, for the root ambient), Volume is the compartment’s volume, and Children is
the list of children ambients (which can be empty). We describe this structural informa-
tion by stream variables, because the hierarchical structure can change at runtime. Also
the volume may be modified at run-time.

– molecule(Species,Compartment,N). For each molecular species (Species), we store
the number of molecules N contained in each compartment (Compartment).

Intra-compartment reactions. In previous sCCP models, reactions are described by an
sCCP-agent, which fires at a rate proportional to the rate of the reaction and updates the
store as prescribed. In the setting of a multi-compartment model, there is a problem: a re-
action can fire in all compartments having enough reactants. The naive solution would be
that of having a reaction agent in each compartment, but this creates problems in keeping
track of the compartment structure’s changes. A more efficient solution can be obtained by
exploiting the new choice operator introduced in the language. To fix the ideas, consider the
second order reaction ρ : a+ b→λ z, with rate given by the real function λ = λ(A,B, V ),
depending on the the numerousness A, B of molecules a, b and on the volume V of the
compartment in which the reaction takes place [9]. The reaction is modeled by the follow-
ing agent:
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reaction([a, b], [z], λ) :- askλg (enabled).
local D.local P .
tell∞(active compartments reaction([a, b], D, P )).
choose(X,D,P ).
tell∞(update reaction(X, [a, b], [z])).
reaction([a, b], [z], k)

We explain in more detail the mechanism:

– The first instruction of the reaction is a (stochastically timed) ask. The agent checks if
the reaction is enabled, by seeing if in the store there is a compartment containing at
least one molecule of species a and one of species b. The rate of such action, indicated
by λg , is computed by adding up the rates of ρ for each compartment in which the
reaction is active, hence it is the global rate of seeing a ρ-type reaction somewhere in
the system. If c1, . . . , ck are all the compartments of the system, Aci

, Bci
represent

the quantity of species a and b in compartment ci, and Vi is the volume of ci, then
λg =

∑
ci
λ(Aci

, Bci
, Vi).

– If the agent wins the race condition and executes, then it will compute the list of com-
partments in which reaction ρ is active, by calling the constraint active compartments reaction([a, b], D, P ).
Such list is stored in the local variable D, while P is the list of the rates of ρ within
each such compartment, normalized by λg (hence it is a probability distribution on ac-
tive compartments). The call of choose determines in which compartment X ρ actually
fires.

– The store is updated consistently, by reducing the number of a and b molecules in
the compartment X , and increasing the number of the product z of the reaction in X .
Finally, the agent recursively calls itself.

It can be proven that this agent is equivalent to a model in which there is a ρ-reaction
agent in each compartment c, executing the reaction only within c.

Flow among compartments. The flow of substances in and out cellular compartments is a
crucial biological process. For instance, the flow of ions in neurons is used to create and
propagate electrical signals. Modeling flow of molecules in sCCP is done similarly to intra-
compartment reactions. As an example, consider a compartment type c, for instance a cell,
and a molecule a which can enter into c at a certain rate λin. Similarly to reactions, we
define an agent that can execute at the global rate of inflow λgin of a into any compartment
of type c, then selecting the actual compartment using a choose(·, ·, ·) agent and performing
the required store updates (decreasing the amount of a outside and increasing a inside).2

inflow(a, c, λin) :- askλg
in

(enabled).
local D.local P .
tell∞(active compartments inflow(c, a,D, P )).
choose(X,D,P ).
tell∞(update inflow(X, a)).
inflow(a, c)

2 Note that, in order to identify the parent ambient, we simply have to look at the information stored
in the predicate compartment(Name,Parent,Volume,Children).
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Outflow and inter-compartment reactions (like the binding of a molecule to a receptor
membrane protein) can be modeled similarly.3

Compartment dynamics. Modeling dynamics at the compartment level, like moving com-
partments in and out, merging them, destroying them or creating new ones, requires suitable
bookkeeping of the constraint store. For instance, moving an ambient inside another ambi-
ent requires to modify the (stream) variable storing the parent of the moved ambient and
to modify the lists of children of the new and previous parent ambients. As an example,
consider the entrance of an ambient of type center inside a sibling ambient of type caccept.

enter(center,caccept, λenter) :- askλg
enter

(enabled).
local D.local P .
tell∞(active compartment pairs enter(c1, c2, D, P )).
choose(X,D,P ).
tell∞(update enter(X)).
enter(center, caccept)

In this case, the agent executes with a rate λgenter, which is the global entrance rate,
computed by adding the entrance rate for each pair of center − caccept ambients which
are siblings (having the same parent), and for which the entrance is enabled (model depen-
dent conditions must be satisfied). Then, as usual, the set of all active pairs of ambients in
computed, and one pair is chosen proportionally to their entrance rate. Finally, the store is
updated consistently, as explained above.

Exit and merging can be modeled analogously, say by expel(cexit, cexpel, λexpel) and
merge(c1, c2, cmerged, λmerge), the main difference being the way the store is modified to
account for the modified inclusion relationships. In particular, in case of a merge, we must
ensure that the content of the two merged ambients is added. Destroying a compartment
(destroy(c, λdestroy)) is also quite straightforward, just some care is needed to add the
substances contained in the dissolved ambient to its parent compartment.

Fig. 1. Schematic representation of phagocytosis and exocytosis. The portion of the membrane in red
envelops the phagocytosed ambient a1, and it merges again to the cell membrane on exocytosis.

Indeed, more complex biologically activities involving compartments can also be mod-
eled. For instance, consider phagocytosis (cf. Figure 1), the process with which a cell cap-
tures an external entity by enveloping it into the cell’s membrane. This operation can be

3 The rate function can be quite complex. For instance, in modeling osmosis in plants, i.e. the flow
of water in and out the cell, the rate depends on the concentration inside and outside the cell and
on volume-dependent pressure effects, cf. [20].

14



modeled by the agent phagocytosis(ceaten, ceater, cwrapper, λphago), which works sim-
ilarly to agent enter: a ceaten-ambient is phagocytosed by a ceater-ambient and enveloped
by a newly created cwrapper-ambient. In case we are modeling also some membrane pro-
teins, like receptors or channels,4 part of them may be moved to the newly created compart-
ment. Exocytosis, the reverse operation of phagocytosis (cf. Figure 1), can be modeled in
a similar, but opposite, manner, by the agent exocytosis(cexpelled, cexpeller, λexo). Other
operations of biological membranes, like pinocytosis, budding, and so on, see [5] can be
easily described, too.

3.1 An example: a virus entering a cell

We discuss here a very simple example, taken from [5], in which we model a virus attacking
a cell and injecting inside it its viral RNA. Schematically, the process starts with the cell
phagocytosing the virus, whose membrane resembles the cellular one (in fact, it is created
from it in the later phase of infection). Once the virus is inside, it is targeted by an endosome,
a small organelle that usually is involved in capturing the material which enters the cell. The
endosome merges with the virus (which is encapsulated in a piece of the cell membrane),
but is then deceived by special viral proteins on the surface of the virus, which trigger an
exocytosis step. Hence, the virus nucleo-capside is released into the cell cytosol and then
dismantled, freeing viral RNA in the cell.

The virus is thus modeled as a compartment, virus, containing another compartment,
nucleo-capside, which contains viral RNA inside (molecular species: vRNA). Each virus
contains also some of the membrane proteins involved in the process (molecular species,
vProt). The other compartments types required for the model are the cell, the endosome,
the vesicle containing the virus after phagocytosis (virus-vesicle), and the virus-endosome
complex (virus-endosome).

In addition to the definition of suitable constraints, storing information about compart-
ments and substances involved, the previous operations can be specified by following par-
allel composition of agents:

phagocytosis(virus,cell,virus-vesicle,λp) ‖
merge(virus-vesicle,endosome,virus-endosome,λm) ‖

exocytosis(nucleo-capside,virus-endosome,λe) ‖ destroy(nucleo-capside,λd).

4 Conclusions

Compartmentalization is one of the most relevant features of biological systems, yet one of
the most difficult to express, due to the dynamical evolution of the hierarchical structure.
This problem has been tackled by defining dedicated languages or by extending existing
ones.

In this paper, we showed how to deal with dynamic ambients in a simple manner in
sCCP, a stochastic extension of concurrent constraint programming. What is required is

4 Membrane proteins, in the simplest case, are modeled as molecular species belonging to the com-
partment enclosed by the membrane. A more complex and faithful description can be achieved by
modeling the membrane as a dedicated compartment, containing membrane proteins.
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a simple programming of the constraint store, by defining suitable constraints describing
the hierarchical structure and encoding other structural and spatial information. Most im-
portantly, such activity can be done just once, defining a library of constraints and agents
that can be used to describe a wide variety of systems, and could be extended with minor
efforts. Hence, our approach provides an easy-to-use framework, as all technical details are
naturally hidden from the standard user, which takes the constraint library as a black box.

Another point in favor of sCCP is that constraints can be used to describe different fea-
tures of biological systems, like combinatorial biochemical networks, in the same frame-
work, making straightforward the problem of integrating different modeling domains.

Finally, sCCP has at disposal different semantics apart from the standard discrete and
stochastic one, based on ordinary differential equations and on (stochastic) hybrid systems.
This allows to use, at least in principle, a wide variety of analysis techniques, ranging from
numerical simulation to model checking.

In this direction, however, there are some open theoretical issues. In fact, all the approx-
imate semantics are defined on a subset of sCCP in which the store is flat, as it contains
only a set of integer-valued stream variables. Hence, to use them in a more general setting,
we should set up a method to “flatten” the description of the constraint store, characterizing
the cases in which this could be done.

Another fundamental issue which needs to be faced is the implementation of an efficient
general purpose simulator, integrating efficient stochastic simulation and efficient manage-
ment of the constraint store and of stream variables. The current simulator, implemented
in Prolog, is not sufficiently efficient to deal with the massive computations required in
simulation and analysis of biochemical systems.
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Abstract. A Hidden Markov Model (HMM) is a common statistical model which is
widely used for analysis of biological sequence data and other sequential phenomena.
In the present paper we extend HMMs with constraints and show how the familiar
Viterbi algorithm can be generalized, based on constraint solving methods. HMMs
with constraints have advantages over traditional ones in terms of more compact ex-
pressions as well as opportunities for pruning during Viterbi computations. We exem-
plify this by an enhancement of a simple prokaryote gene finder given by an HMM.

1 Introduction

Hidden Markov Models (HMMs) are one of the most popular models for analysis of sequen-
tial processes taking place in a random way, where “randomness” may also be an abstraction
covering the fact that a detailed analytical model for the internal matters are unavailable.
Such a sequential process can be observed from outside by its emission sequence (letters,
sounds, measures of features, all kinds of signals) produced over time, and a HMM postu-
lates a hypothesis about the internal machinery in terms of a finite state automaton equipped
with probabilities for the different state transitions and single emissions. Decoding or pre-
diction for a given observed sequence means to compute the most probably state transitions
that the HMM can go through to produce the sequence, and thus this represents a best hy-
pothesis for the internal structure or “content” of the sequence. HMMs are widely used in
speech recognition and biological sequence analysis [9,2].

Gene prediction aims at algorithmically identifying stretches of a DNA sequence that
are biologically functional, in particular protein-coding genes but also other functional ele-
ments such as RNA genes [17]. Several HMM based gene finders have been proposed for
gene prediction, including [4,7,6]. Decoding an “observed” DNA sequence using an HMM
produces a state sequence, that appears as an annotation that identifies regions of genes and
non-genes. The automaton defines the regular language for these annotations [13].

With the usual decoding algorithms, such as the Viterbi algorithm [15], it is difficult to
add prior knowledge to an HMM about, say, verified coding regions in a specific sequence,
or other side-constraints (e.g., this-and-this subsequence cannot occur in a coding region).

? This work is supported by the project “Logic-statistic modeling and analysis of biological sequence
data” funded by the NABIIT program under the Danish Strategic Research Council.
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For instance, fixing a known coding region at a given position n would require to modify
the HMM so it is guaranteed to be in this state after n iterations. This HMM transformation
may require exponentially many new states.

In this paper, we focus on an extension of HMMs, called Constrained HMMs (CHMMs).
The concept of CHMMs is introduced by Sato et al. in [12], although earlier and unrelated
systems have used the same or similar names (commented on below). CHMMs restrict
the set of allowed state and emission sequences (runs) by the addition of constraints to a
standard HMM. The contribution of this paper is to introduce CHMM into Constraint Pro-
gramming. A constraint model is proposed to represent the allowed “runs”. With this model,
decoding essentially becomes a constraint optimization problem. We adapt the Viterbi al-
gorithm to take into account such constraints using constraint solving techniques, and we
exemplify it for enhancing an HMM based prokaryote gene finder by constraints that state
existence of already known genes.

The paper is organized as follows: section 1 describes the background on HMM required
to understand the rest of the paper and exemplifies it with a simple gene finder. In section 3,
the constraint model for CHMM is described. Finally, section 4 presents related works and
our plans for further work.

2 Background

Here we present Hidden Markov Models (HMMs) and the Viterbi algorithm so we can adapt
them later with constraints.

2.1 Hidden Markov Model

For simplicity of the technical definitions, we limit ourselves to discrete first order HMMs
with a distinguished initial state and no explicit final state (i.e., any state is final); the gen-
eralization to more initial states is straightforward.

Definition 1. A Hidden Markov Model (HMM) is a 4-tuple 〈S,A, T,E〉, where

– S = {s0, s1, . . . , sm} is a set of states which includes an initial state referred to as s0;
– A is a finite set of emission symbols, individually denoted ei;
– T is a set of transition probabilities {p(si; sj)}si∈S representing the probability to

transit from one state to another. For each such si,
∑
sj∈S\{s0} p(si; sj)

= 1.
– E is a set of emission probabilities {p(si; ej)}si∈S\{s0} representing the probability of

emitting symbol from a state. For each such si,
∑
ej∈E p(si; ej) = 1.

A run of a HMM is defined as a pair consisting of a sequence of states s(0)s(1) . . . s(n),
called a path and a corresponding sequence of emissions e(1) . . . e(n), called an observation,
such that

– s(0) = s0;
– ∀i, 0 ≤ i ≤ n− 1, p(s(i); s(i+1)) > 0 (probability to transit from s(i) to s(i+1));
– ∀i, 0 < i ≤ n, p(s(i); e(i)) > 0 (probability to emit e(i) from s(i)).

The probability of such a run is defined as
∏
i=1..n p(s

(i−1); s(i)) · p(s(i); e(i)).
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HMMs are commonly used to find the probability of a given observation, decoding the path
corresponding to an observation and finally finding the model probabilities that maximizes
the likelihood of generating a given set of observations. In this paper, we will only explain
the decoding computation using the Viterbi algorithm [15].

2.2 The Viterbi Algorithm

The Viterbi algorithm [15] is a dynamic programming algorithm for finding a most proba-
ble path corresponding to a given observation. The algorithm keeps track of, for each prefix
of an observed emission sequence, the most probable (partial) path leading to each possi-
ble state, and extends those step by step into longer paths, eventually covering the entire
emission sequence.

We present the algorithm here as a rewriting system on a set of 4-tuples Σ, each rep-
resenting a (potentially most probable) path for such prefixes; a fixed emission sequence
e(1) · · · e(n) is assumed to be given. Each such 4-tuple is of form 〈s, i, p, π〉 where π is a
partial path ending in state s and representing a path corresponding to the emission sequence
prefix e(1) · · · e(i); p is the collected probability for the emissions and transitions applied in
the construction of π.

The algorithm can be described by the two rewriting rules given by Fig. 1. The trans

trans : Σ := Σ ∪ {〈s′, i+1, p · p(s; s′) · p(s′; e(i+1)), π s′〉}
whenever 〈s, i, p, π〉 ∈ Σ, p(s; s′), p(s′; e(i+1)) > 0
and prune does not apply.

prune : Σ := Σ \ {〈s, i+1, p′, π′〉}
whenever 〈s, i+1, p, π〉, 〈s, i+1, p′, π′〉 ∈ Σ and
p ≥ p′.

Fig. 1. Rewriting rules for the Viterbi algorithm for traditional HMMs

rule expands an existing partial path one step in each possible direction whereas prune
removes those that are not optimal up to a given state; the condition that trans cannot apply
in case prune is possible, ensures that no non-optimal partial path is expanded. The rules
are expected to execute as long as possible, except that trans is only applied when it adds
a 4-tuple to Σ that has not been added before. We take the following correctness property
for granted.

Proposition 1. Assume a HMM H with the notation as above and an observation Obs =
e(1) · · · e(n). When the Viterbi algorithm FIG. 1 is executed from an initial set of 4-tuples
{〈s0, 0, 1, ε〉}, ε being the empty path and s0 the initial state of H , it terminates with a set
of 4-tuples Σfinal. It holds that

– For any 〈s, n, p, π〉 ∈ Σfinal, π is a most probable path for Obs ending in s and with
probability p.
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– Whenever there exists a path for Obs ending in s, Σfinal includes a 4-tuple of the form
〈s, n, p, π〉.

The algorithm can run in time linear in the length of the given emission sequence times a
quadratic factor of the number of states in the HMM; the latter is thus constant for a specific
HMM.

2.3 An example HMM: a simple gene finder

As an example of an HMM that we later extend with constraints, we consider the prob-
lem of identifying protein coding genes in prokaryotes. A DNA sequence is composed of
molecules, called nucleotides, represented by the four letters a, c, t and g. Some parts of a
DNA sequence code for genes, called coding regions, while other parts do not and are called
non coding regions. Coding regions contain a number of codons, triplets of nucleotides, each
coding for an amino acid in a protein (to be produced by the gene). For prokaryotes, a cod-
ing region is contiguous, and it begins with a specific start codon, which is often atg, and
ends with a stop codon, which is one of taa, tga or tag.

Fig. 2. A simple HMM for Prokaryote genes prediction

Fig. 2 shows a simple HMM for prediction of genes; more advances HMMs are used in
successful gene finders that have been reported in the literature, e.g., Genemark.HMM [7]
and EasyGene [6], and they can also be handled by our approach. The emission symbols of
this HMM are codons, thus three letters form one symbol. It has four states: start codon,
non coding, coding, stop codon. From non coding, any codon can be emitted. From state
start codon, only start codons ata, atg, att, ctg, gtg and ctg can be emitted. From coding,
any codon can be emitted except stop codons, taa, tga and tag. From state stop codon,
only stop codons taa, tga or tag can be emitted. A consequence of the simplification of
only emitting entire codons and not individual letters in this HMM is that we restrict to
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non coding regions whose length measured in codons is divisible, which is not the case
in reality. Transition probabilities have been computed from an already annotated genome,
Escherichia coli, K-12 substr. MG1655 (Genbank access NC 000913).

We can illustrate the annotation process as follows; we consider a small piece of E.coli
from position 115 to 255.

ctt agg tca cta aat act tta acc aat ata ggc ata gcg cac aga cag ata aaa att aca gag
tac aca aca tcc atg aaa cgc att agc acc acc att acc acc acc atc acc att acc aca ggt
aac ggt gcg ggc tga,

The Viterbi algorithm computes the most probable path which is indicated as follows:
ctt · · · tcc atg aaa · · · ggc tga

non coding · · · non coding start codon coding · · · coding stop codon

From the indicated path, we can extract an annotation that states a non coding region from
position 115 to 189 and a coding region from position 190 to 255.

3 CHMMs and Constraint Models for gene prediction

In this section, we give a formal definition of CHMMs and propose a constraint model for
CHMM runs which is employed in an extended Viterbi algorithm.

3.1 Constrained Hidden Markov Model

A CHMM restricts the behavior of an HMM by constraints that must hold on paths that are
considered.

Definition 2. A constrained HMM (CHMM) is defined by a 5-tuple 〈S,A, T,E,
C〉 where 〈S,A, T,E〉 is an HMM and C is a set of constraints, each of which is a mapping
from HMM runs into {true, false}.

A run of a such a CHMM, 〈path, obs〉 is a run of the corresponding HMM for which
C(path, observation) is true (understood as the conjunction of the individual constraints
in C).

Notice that we defined constraints in a highly abstract way, independently of any specific
constraint language. However, the Markov processes considered in this paper are discrete,
and in the following we will apply constraints over finite domains [14]. In [12], constraints
were expressed using in Prolog using tests and failure, in a way that do not invite to using
constraint solving techniques.

3.2 A constraint model for runs of a CHMM

The constraint model represents runs of a CHMM. A run corresponds to a solution of the
constraint model.

Let 〈S,A, T,E,C〉 be a CHMM and n an integer value that represents the run length.
The constraint model is described by the following syntax:

run([s(0), S1, . . . , Sn], [E1, . . . , En])
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where each variable Si and Ei represents the state and respectively the emission at the step
i. The domain of Si and Ei, noted dom(Si) and respectively dom(Ei), is S \ {s0} and
respectively E.

run([s(0), S1, . . . , Sn], [E1, . . . , En]) is true iff

∃s(1) ∈ dom(S1), . . . ,∃s(n) ∈ dom(Sn) and

∃e(1) ∈ dom(E1), . . . ,∃e(n) ∈ dom(En),

C(s(0)s(1) . . . s(n), e(1) . . . e(n)) is true, s(0) = s0 and

p(s(0); s(1)) · p(s(1); e(1)) . . . p(s(n−1); s(n)) · p(s(n); e(n)) > 0 (1).

By definition of a CHMM, variables Si and Ei are constrained to satisfy by C. For-
mula (1) states that s(0)s(1) . . . s(n) and e(1) . . . e(n) is a run the HMM. From this formula,
restrictions on the domain of the variables Si and Ei can be added.

The formula (1) is composed of a product of probabilities. Then, its value is positive iff
the value of all the transition or emission probabilities are positive. We used this property
to establish a (local) relationship between Si and Si+1 and Si and Ei. Indeed, valuation
of Si to s(i) and Si+1 to s(i+1) can be part of a solution of the constraint model whenever
p(s(i); s(i+1)) > 0. These relationships between variables of run/2 are modeled by the
following constraints added on them:

trans(Si, Si+1) and emit(Si, Ei)

where Si, Si+1 and Ei are variables of run/2.
trans(Si, Si+1) is true iff

∃s(i) ∈ dom(Si) and s(i+1) ∈ dom(Si+1), p(s(i); s(i+1)) 6= 0.

emit(Si, Ei) is true iff

∃s(i) ∈ dom(Si) and e(i) ∈ dom(Ei), p(s(i); e(i)) 6= 0.

These constraints are used for domain pruning during constraint propagation. For ex-
ample, let us suppose that emission taa is observed at the step i of a run of the sim-
ple gene finder. During constraint propagation, emit(Si, Ei) prunes the domain of Si to
{noncoding, stop codon}.

Constraints C of a CHMM are simply added on the variables of run/2. In the following,
an example of C is defined to include prior knowledge on the simple gene finder.

3.3 A constrained gene finder

We illustrate the constraint model on the simple gene finder presented subsection 2.3. The
HMM associated with the simple gene finder is constrained to be in certain states at given
positions. For instance, this CHMM allows the inclusion of information about known coding
regions during the Viterbi computation.

Consider
run([s(0), S1, . . . , Sn], [e(1), . . . , e(n)])
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the constraint model associated with the simple gene finder where e(1), . . . , e(n) is a se-
quence of n codons. A set of variables Si is constrained to be equal to State with the
following constraint:

fix(State, Position1, Position2)

where State ∈ S\{s(0)},Position1 ∈ {1, . . . , n},Position2 ∈ {1, . . . , n} andPosition1 ≤
Position2.

fix(State, Position1, Position2) is true iff

∃k ∈ dom(Position1) and ∃l ∈ dom(Position2),∀i, k ≤ i ≤ l, Si = State.

For example, fix a position of a coding region can be expressed as the conjunction of

fix(start codon, P1, P1) ∧ P1 + 1 = P2∧
fix(coding, P2, P3) ∧ P3 + 1 = P4 ∧ fix(stop codon, P4, P4).

These constraints on the simple gene finder oblige runs to be in a coding region between the
position P1 and P4.

3.4 Viterbi Computation for a CHMM

Consider a CHMM 〈S,A, T,E,C〉, an observation e(1) . . . e(n) and a constraint model

run([s(0), S1, . . . , Sn], [e(1), . . . , e(n)]).

The most probable path is computed by finding the solution s(1), . . . , s(n) of the constraint
model that maximizes the objective function: run probability.

Viterbi computation for CHMM is expressed as a rewriting system on a set of 5-tuples
Σ. Each such 5-tuple is of form 〈s, i, p, π, σ〉 where π is a partial path ending in state s
and representing a path corresponding to the emission sequence prefix e(1) · · · e(i); p is the
collected probability for the emissions and transitions applied in the construction of π and σ
is the current constraint store, a conjunction of constraints. Solutions of the constraint store
are denoted by sol(σ).

The two rules of the classical Viterbi algorithm are adapted for CHMM (see Fig. 3).
Viterbi computation is executed from an initial set of 5-tuples

{〈s(0), 0, 1, ε, C ∧ trans(s(0), S1)∧ ∧
0<i≤n−1

trans(Si, Si+1) ∧
∧

0<i≤n

emit(Si, Ei)〉}.

The trans ctr rule expands an existing partial path one step in a restricted number of
directions that satisfy the constraint store. This satisfiability checking of the constraint store
is denoted by check sat. prune ctr removes partial paths that are non optimal solutions.
This is the case when two conditions are satisfied: the probability to reach s is not optimum
and solutions of σ′ are also solutions of σ. The second condition avoids removing partial
paths that could be part of an optimal solution. If sol(σ′) and sol(σ) can not be compared,
we can not conclude that the partial path π′ is not part the optimal solution.
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trans ctr : Σ := Σ ∪ {〈s′, i+1, p · p(s; s′) · p(s′; e(i+1)), π s′, σ ∧ Si+1 = s′〉}
whenever 〈s, i, p, π, σ〉 ∈ Σ, p(s; s′), p(s′; e(i+1)) > 0
check sat(σ ∧ Si+1 = s′) and prune ctr does not apply.

prune ctr : Σ := Σ \ {〈s, i+1, p′, π′, σ′〉}
whenever 〈s, i+1, p, π, σ〉, 〈s, i+1, p′, π′, σ′〉 ∈ Σ,
p ≥ p′ and sol(σ′) ⊆ sol(σ).

Fig. 3. Rewriting rules for the Viterbi algorithm for CHMM

Correctness property is argued in the previous paragraph. prune ctr rule allows us to
remove only partial paths detected as part of a non optimal solution. Unlike the classical
Viterbi algorithm, this algorithm can run in time exponential in the length of the given
emission sequence. Indeed, potentially all the extended partial paths need to be kept in
Σ. However, with an efficient check sat, partial paths that can not lead to the solution of
the constraint model will be discarded as soon as possible. Size reductions of Σ due to
prune ctr is also important. The size for Σ will stay reasonable if the two constraint stores
can easily be compared. That is the case for the fix constraint. Indeed, this constraint con-
strains only a restricted set of variables of the path. Outside this set, the remaining variables
are not constrained. Then, the comparison is straightforward.

4 Discussion and future work

The term “Constrained HMM” is used in [10,5] refers to restrictions on the finite automa-
ton associated with a HMM but not as constraint on HMM runs. In [12], CHMMs were
introduced to exemplify an EM algorithm for models with possible derivation failures. Our
approach differs since we take care about constraints on the HMM during Viterbi computa-
tion whereas they do that during the learning process.

In constraint modeling, we notice two recent works with a similar approach of ours
[16,18]. In [16], Will et al. propose a constraint model to represent pairwise alignment
problem which integrates constraints related to non-coding RNA. In [18], Zytnicki et al.
describe a weighted CSP model for locating motifs of non-coding RNA.

In this paper, a constraint model that represents runs of constrained HMMs is defined.
In this framework, a Viterbi computation is expressed as an optimization problem and con-
ditions for an efficient computation are presented. Finally, a gene finder that includes prior
knowledge is presented along the paper to exemplify a usage of CHMM.

A first implementation based on PRISM [11] allows us to perform a first experiment on
fixing a coding region for the simple gene finder. PRISM build-ins give us for free a Viterbi
computation for CHMM. To improve the efficiency of the pruning ctr rule to reduce the
search, we work on an implementation of the proposed algorithm in CHR [3], a multiset
based rewriting system, that closely follows rewriting systems described in this paper.

We also work on an automatic generation of the constraint model given a HMM. This
implementation is based on our Probabilistic Choice Constraints library [8]. This constraints
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library implemented with clp(fd) library of SICStus Prolog [1] allow the simulation of par-
tially defined probabilistic choices in Constraint Programming. In the constraint model,
probabilistic choice is partially known when origin state of an transition or emission is not
known. This framework and clp(fd) library will facilitate the definition of other kinds of
constraints which can be combined with existing gene finding methods, improving flexibil-
ity and the quality of the results.
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Abstract. Haplotype inference is a crucial topic in genetic studies and also repre-
sents a challenging computational problem. A significant number of combinatorial ap-
proaches tackle the haplotype inference problem either for pedigrees or for unrelated
individuals. This work integrates two relevant and well-known constraint based haplo-
typing approaches. The Minimum Recombinant Haplotyping Configuration (MRHC)
problem targets the haplotyping solution which minimizes the number of recombinant
events within a pedigree. MRHC only takes into consideration the family information.
In contrast, the Haplotype Inference by Pure Parsimony (HIPP) problem aims at find-
ing a solution which minimizes the number of distinct haplotypes. The HIPP approach
is adequate for phasing unrelated individuals from the same population. This paper
proposes a method for inferring haplotypes for individuals of the same population,
although organized in different families, thus combining both MRHC and HIPP ap-
proaches. This new method can take into account family information and population
information, both important in haplotype inference. Experimental results show that
the proposed approach is more accurate, both in terms of switch error rate and miss-
ing error rate, than the MRHC approach (performed by the PedPhase tool), on sets of
families from the same population.

1 Introduction

Genetic association studies with phenotypic variations are only possible with a deep knowl-
edge of the genetic differences between individuals. A very important and challenging task
to understand genetic variations consists of inferring haplotypes from genotypes.

Constraint based methods for haplotype inference have been shown to be a practical
and relevant alternative to statistical approaches, either for phasing pedigrees [9,11] or un-
related individuals [4]. Nonetheless, a study comparing the haplotype inference methods
using pedigrees and unrelated individuals [12] points out that a new method which takes
into consideration both pedigree and population information is necessary. Indeed, existing
haplotyping methods for pedigrees ignore the population information, while haplotyping
methods for unrelated individuals do not take into account the pedigree information.

The work presented in this paper was motivated by the comparison study described
in [12]. A constraint based model to deal with families and unrelated individuals is pro-
posed. The new method is based on two well-known combinatorial approaches: MRHC
and HIPP. The Minimum Recombinant Haplotype Configuration (MRHC) approach is used
to phase individuals organized in pedigrees, by minimizing the number of recombination
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events within each pedigree. In general, a significant number of solutions can be obtained
using only the minimum recombinant paradigm, especially when several families are con-
sidered. Thus, the Haplotype Inference by Pure Parsimony (HIPP) approach is considered to
choose a solution that uses the minimum number of distinct haplotypes, among all the min-
imum recombinant solutions. The new method for haplotype inference, named PedRPoly,
is shown to be more accurate than the method traditionally used for inferring haplotypes
on pedigrees using the minimum recombinant approach, as performed by the PedPhase
tool [11]. PedRPoly is also shown to be more accurate than the pure parsimony approach,
performed by the RPoly tool [4], when pedigrees are considered. In addition, this paper
suggests some reductions on the size of the original integer programming MRHC model.

The paper is organized as follows. The next section describes the haplotype inference
problem and overviews the MRHC and HIPP approaches. Section 3 details the new pro-
posed model, PedRPoly, which combines MRHC and HIPP formulations. Afterwards, ex-
perimental results comparing the accuracy of PedPhase and PedRPoly are presented and
discussed. Finally, the conclusions are presented in section 5.

2 Haplotype Inference

Single Nucleotide Polymorphisms (SNPs) are the most common variations between hu-
man beings, which occur when a nucleotide is mutated into another nucleotide at a single
DNA position. Haplotypes correspond to the set of closely linked SNPs, within a single
chromosome, which tends to be inherited together. However, it is very expensive and time
consuming to determine experimentally the haplotypes. Instead, only genotypes, which cor-
respond to the conflated data of two haplotypes on homologous chromosomes are obtained.
The haplotype inference problem consists in determining the haplotypes which originate a
given genotype.

Considering that mutations are rare, we may assume that each SNP can only have two
values. Each haplotype is therefore represented by a binary string, with size m ∈ N, where
0 represents the wild type nucleotide and 1 represents the mutant type nucleotide. Each site
of the haplotype hi is represented by hi j (1 ≤ j ≤ m). Each genotype is represented by
a string, with size m, over the alphabet {0, 1, 2}, and each site of the genotype gi is repre-
sented by gi j . Each genotype is explained by two haplotypes. A genotype gi is explained
by a pair of haplotypes (hai ,hbi ) such that

gi j =
{
hai j if hai j = hbi j
2 if hai j 6= hbi j

. (1)

A genotype site gi j with either value 0 or 1 is a homozygous site (the same allele is inherited
from both parents), whereas a site with value 2 is a heterozygous site (different alleles are
inherited from each parent).

Definition 1. Given a set G of n genotypes, each with sizem, the haplotype inference prob-
lem consists in finding a set of haplotypes H, such that each genotype gi ∈ G is explained
by two haplotypes hai , h

b
i ∈ H.

For each genotype g with k heterozygous sites, there are 2k−1 pairs of haplotypes that
can explain g. For example, genotype gi = 202 can be explained either by haplotypes
(000,101) or by haplotypes (001,100).
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Most often genotyping procedures leave a percentage of missing data. To represent miss-
ing sites, the alphabet of the genotypes is extended to {0, 1, 2, ?}.

When the considered individuals are organized in pedigrees, additional information may
be associated with the haplotype inference problem. Considering the Mendelian law of in-
heritance, every site in a single haplotype is inherited from a single parent, assuming no
mutations within a pedigree. In a pedigree, an individual is a founder if he does not have
parents on the pedigree (and a non-founder if he has both parents on the pedigree). We as-
sume that haplotype ha is inherited from the father and hb is inherited from the mother, thus
breaking a symmetry on the pairs of haplotypes for non-founder individuals. However, a re-
combination may occur, where the two haplotypes of a parent get shuffled and the shuffled
haplotype is passed on to the child. For example, suppose a father has the haplotype pair
(011, 100) and the haplotype that he passed on to his child is 111. Hence one recombination
event must have occurred: haplotypes 011 and 100 have mixed together and originated a
new haplotype h = 111. Although every site of the child’s haplotype h was inherited from
the father, the first site came from the paternal grandmother, while the second and third sites
came from the paternal grandfather.

2.1 Minimum Recombinant Haplotype Configuration

Recombination events are rare in DNA regions with high linkage disequilibrium. There-
fore, most rule-based haplotype inference methods for pedigrees assume no recombination
among SNPs within each pedigree [19,20,13]. Although the assumption of no recombina-
tion is valid in many cases, this assumption can be violated even for some dense markers [9].
Therefore, the problem of minimizing the number of recombinations was suggested [6,18].
The Minimum Recombinant Haplotype Configuration (MRHC) problem is a well-known
approach to solve the haplotype inference problem in pedigrees. The MRHC problem is
NP-hard [9,10,15].

Definition 2. The Minimum Recombinant Haplotype Configuration (MRHC) problem aims
at finding a haplotype inference solution for a pedigree which minimizes the number of
required recombination events [6,18].

The PedPhase tool [9] implements an Integer Linear Programming (ILP) model for
MRHC with missing alleles.

2.2 Haplotype Inference by Pure Parsimony

The Haplotype Inference by Pure Parsimony (HIPP) approach aims at finding a minimum-
cardinality set of haplotypes H that can explain a given set of genotypes G. The idea of
searching for the solution with the smallest number of haplotypes is biologically motivated
by the fact that individuals from the same population have the same ancestors and mutations
do not occur often. Moreover, it is also well-known that the number of haplotypes in a
population is much smaller than the number of genotypes. It has been shown that the HIPP
problem is NP-hard [7].

Definition 3. The haplotype inference by pure parsimony (HIPP) problem consists in find-
ing a solution to the haplotype inference problem which minimizes the number of distinct
haplotypes [5].
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RPoly [4] is a state-of-the-art solver implementing a 0-1 ILP model for solving the HIPP
problem.

3 PedRPoly: Minimum Recombinant Maximum Parsimony

This section describes the PedRPoly model which aims at finding a haplotype inference so-
lution for sets of pedigrees from the same population. The PedRPoly model is a combination
of the MRHC PedPhase model [10] and the HIPP RPoly model [4].

Definition 4. The Minimum Recombinant Maximum Parsimony model aims at finding a
haplotype inference solution which minimizes the number of recombination events within
pedigrees and the number of distinct haplotypes used.

Example 1. Consider two trios (father, mother and child), from two families A and B, with
the following genotypes: gfather

A = 102, gmother
A = 222, gchild

A = 202, gfather
B = 211, gmother

B =
202 and gchild

B = 222. Consider the following haplotype inference solutions.
Solution 1: hfather

A = (100, 101), hmother
A = (001, 110), hchild

A = (100, 001), hfather
B =

(011, 111), hmother
B = (000, 101) and hchild

B = (111, 000). Solution 1 is a 0-recombinant
solution with 7 distinct haplotypes (100, 101, 000, 111, 011, 001, 110).

Solution 2: hfather
A = (101, 100), hmother

A = (000, 111) and hchild
A = (101, 000), hfather

B =
(011, 111), hmother

B = (000, 101) and hchild
B = (011, 100). Solution 2 is a 1-recombinant

solution (there is one recombination event in family B) and uses 5 distinct haplotypes
(100, 101, 000, 111, 011).

Solution 3: hfather
A = (101, 100), hmother

A = (000, 111) and hchild
A = (101, 000), hfather

B =
(011, 111), hmother

B = (000, 101) and hchild
B = (111, 000). Solution 3 is a 0-recombinant

solution using 5 distinct haplotypes (100, 101, 000, 111, 011).
Clearly, solution 3 is preferred to the other solutions. Solution 3 is both a MRHC and a

HIPP solution. Consequently, solution 3 is a Minimum Recombinant Maximum Parsimony
solution. If there exists no solution that minimizes both criteria, then preference is given
to the MRHC criterion and hence, the MRHC solution which uses the smallest number of
distinct haplotypes would be chosen.

PedRPoly is a 0-1 ILP model which combines the ILP PedPhase and the RPoly models.
The constraints of the model are detailed in Table 1. Following the RPoly model, PedRPoly
associates two haplotypes, hai and hbi , with each genotype gi, and these haplotypes are re-
quired to explain gi. Moreover, PedRPoly associates a variable ti j with each heterozygous
site gi j , such that ti j = 1 indicates that the mutant value was inherited from the father
(hai j = 1) and the wild value was inherited from the mother (hbi j = 0) whereas ti j = 0 in-
dicates that the wild value was inherited from the father (hai j = 0) and the mutant value was
inherited from the mother (hbi j = 1). In addition, PedRPoly associates two variables with
each missing site. Variable tai j is associated with the paternal haplotype site hai j , whereas
variable tbi j is associated with the maternal haplotype site hbi j . The values of hai and hbi at
homozygous sites are implicitly assumed.

To analyze the recombination events within pedigrees, not only the paternal and ma-
ternal haplotypes are considered, but also the grand-paternal and grand-maternal origin of
each allele in the haplotypes. Following the PedPhase MRHC model, for each non-founder
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Table 1. The PedRPoly Model: Minimum Recombinant Maximum Parsimony.

minimize: (2n+ 1)×
∑

non−founder i

∑m−1
j=1 (r1i j + r2i j) +

∑n
i=1(ua

i + ub
i )

subject to:
Equation Constraint Indexes

Mendelian Law of Inheritance rules (Table 2)

l = 1, 2

(2)
−rl

i j + gl
i j − gl

i j+1 ≤ 0
1 ≤ i ≤ n, i non-founder

−rl
i j − gl

i j + gl
i j+1 ≤ 0

1 ≤ j ≤ m
p, q ∈ {a, b}

(3) ¬(R⇔ S)⇒ xp q
i k (Table 3)

1 ≤ k < i ≤ n
1 < i ≤ n

(4)
∑

k<i ; q∈{a,b}

xp q
i k − u

p
i ≤ 2i− 3

p ∈ {a, b}

individual i and site j, two variables are defined: g1
i j and g2

i j . The assignment g1
i j = 0

(g1
i j = 1) represents that the paternal allele of individual i at site j comes from the paternal

grandfather (grandmother). In a similar way, g2
i j = 0 (g2

i j = 1) represents that the maternal
allele of individual i at site j comes from the maternal grandfather (grandmother). Con-
straints to ensure that the Mendelian law of inheritance is satisfied are defined in Table 2.
Note that PedRPoly only associates variables with heterozygous and missing sites (inspired
by RPoly), while PedPhase associates variables with both homozygous and heterozygous
sites. The new definition of variables associated with sites requires the redefinition of the
constraints related with Mendelian laws. For instance, consider the first constraint of Ta-
ble 2, tf(i) j ⇔ g1

i j , for the case gi j = 0 and gf(i) j = 2. Clearly, if tf(i) j = 1 (which
represents that individual f(i) has inherited value 1 from his father and value 0 from his
mother) then g1

i j = 1 (which represents that individual i must have inherited the value 0
from his paternal grandmother) and vice-versa.

Furthermore, variables are defined to count the number of recombinations. For each
non-founder individual i, variable r1i j (r2i j) is assigned value 1 if a recombination took
place at site j, to create the paternal (maternal) haplotype of individual i. Thus, rli j = 1
if gli j 6= gli j+1, for l = 1, 2 and 1 ≤ j ≤ m − 1, which is ensured by constraints (2).
Here, a simplification to the original MRHC is considered. Actually, in the original model,
rli j = 1 if and only if gli j 6= gli j+1. Observe that an implication, instead of an equivalence,
is sufficient for correctness and reduces in half the number of these constraints.

Furthermore, the model should be able to determine the number of distinct haplotypes
used. Once more following the RPoly model, let xp qi k , with p, q ∈ {a, b} and 1 ≤ k <
i ≤ n, be 1 if haplotype p of genotype gi and haplotype q of genotype gk are different.
The conditions on the xp qi k variables are based on the values of variables ti j and tk j for
heterozygous sites and of variables tai j , t

b
i j , t

a
k j and tbk j for missing sites, and are described

by equations (3).
In addition, the model uses variables u to denote when one of the haplotypes, associated

with a given genotype, is different from all previous haplotypes. Hence, upi , with p ∈ {a, b}
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Table 2. Mendelian Law of Inheritance Rules (regarding variables g1
i j). The constraints involving

variables g2
i j are defined similarly (1 ≤ i ≤ n, i non-founder, 1 ≤ j ≤ m).f(i) corresponds to the

father of i.

Condition Constraint
gi j = 0 ∧ gf(i) j = 2 tf(i) j ⇔ g1

i j

gi j = 0 ∧ gf(i) j =? (g1
i j ∨ ¬taf(i) j) ∧ (¬g1

i j ∨ ¬tbf(i) j)

gi j = 1 ∧ gf(i) j = 2 tf(i) j ⇔ ¬g1
i j

gi j = 1 ∧ gf(i) j =? (g1
i j ∨ taf(i) j) ∧ (¬g1

i j ∨ tbf(i) j)

gi j = 2 ∧ gf(i) j = 0 ¬ti j

gi j = 2 ∧ gf(i) j = 1 ti j

gi j = 2 ∧ gf(i) j = 2 (g1
i j ∨ ti j ∨ ¬tf(i) j) ∧ (g1

i j ∨ ¬ti j ∨ tf(i) j)∧
(¬g1

i j ∨ ti j ∨ tf(i) j) ∧ (¬g1
i j ∨ ¬ti j ∨ ¬tf(i) j)

gi j = 2 ∧ gf(i) j =? (g1
i j ∨ ti j ∨ ¬taf(i) j) ∧ (g1

i j ∨ ¬ti j ∨ taf(i) j)∧
(¬g1

i j ∨ ti j ∨ ¬tbf(i) j) ∧ (¬g1
i j ∨ ¬ti j ∨ tbf(i) j)

gi j =? ∧ gf(i) j = 0 ¬tai j

gi j =? ∧ gf(i) j = 1 tai j

gi j =? ∧ gf(i) j = 2 (g1
i j ∨ tai j ∨ ¬tf(i) j) ∧ (g1

i j ∨ ¬tai j ∨ tf(i) j)∧
(¬g1

i j ∨ tai j ∨ tf(i) j) ∧ (¬g1
i j ∨ ¬tai j ∨ ¬tf(i) j)

gi j =? ∧ gf(i) j =? (g1
i j ∨ tai j ∨ ¬taf(i) j) ∧ (g1

i j ∨ ¬tai j ∨ taf(i) j)∧
(¬g1

i j ∨ tai j ∨ ¬tbf(i) j) ∧ (¬g1
i j ∨ ¬tai j ∨ ¬tbf(i) j)

Table 3. Definition of predicates R and S, accordingly to index values.

Condition Constraint
gi j 6= 2 ∧ gk j = 2 R = (gi j ⇔ (q ⇔ a)) and S = tk j

gk j 6= 2 ∧ gi j = 2 R = (gk j ⇔ (p⇔ a)) and S = ti j

gi j = 2 ∧ gk j = 2 R = (p⇔ q) and S = (ti j ⇔ tk j)

gi j =? ∧ gk j /∈ {2, ?} R = tpi j and S = gk j

gk j =? ∧ gi j /∈ {2, ?} R = tqk j and S = gi j

gi j =? ∧ gk j = 2 R = (q ⇔ a) and S = (tpi j ⇔ tk j)

gk j =? ∧ gi j = 2 R = (p⇔ a) and S = (tqk j ⇔ ti j)

gi j =? ∧ gk j =? R = tpi j and S = tqk j

and 1 ≤ i ≤ n, is 1 if haplotype p of genotype gi is different from all previous haplotypes.
Then, the conditions on the upi variables are based on the conditions for the xp qi k variables,
with 1 ≤ k < i and q ∈ {a, b} and correspond to equation (4).

Finally, the cost function minimizes the number of recombination events, which is given
by the sum of variables r, and the number of distinct haplotypes used in the solution, which
is given by the sum of variables u,

minimize ((2n+ 1)×
∑
non−founder i

∑m−1
j=1 (r1i j + r2i j)) +

∑n
i=1(uai + ubi ).

A larger weight is given to the number of recombinations, because we want to guarantee
that a minimum recombinant solution is chosen. Note that 2n is a trivial upper bound on
the number of haplotypes in the solution, and therefore giving weight 2n+ 1 to the number
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Fig. 1. Comparison of PedRPoly and PedPhase error rates

of recombinations implies that a minimum recombinant solution is always preferred. The
idea of giving more weight to the number of recombinations is biological motivated by the
fact that recombination events within haplotypes are rare. Moreover, the number of recom-
bination events is related with the number of distinct haplotypes. In fact, a larger number of
recombination events suggests a larger number of haplotypes. In general, a recombination
event generates a new haplotype, whereas if no recombination occurs, then the haplotypes
of the child are exact copies of the parents haplotypes.

4 Experimental Results

The experimental data was simulated using the SimPed program [8]. SimPed generates
haplotypes for families, given the pedigree structure, as well as the haplotypes and their
frequencies for founders. Three different sets of haplotypes were considered. These sets of
haplotypes are real data for which haplotypes have been experimentally identified [1,17],
and correspond to the A, B and C data sets used in [2]. Haplotypes in set A have 9 SNPs,
haplotypes in set B have 5 SNPs and haplotypes in set C have 17 SNPs. Three different
pedigree structures, taken from [10], were considered: pedigree 1 with 15 individuals, pedi-
gree 2 with 29 individuals and pedigree 3 with 17 individuals (with a mating loop). Each
simulated instance consists of 10 replicates of the given pedigree, simulating 10 different
families from the same population. Recombination events between alleles were considered
with probabilities 0.1%, 0.5% and 1%. Three variations on missing rates were considered:
1%, 10% and 20%. For each combination of parameters, 5 independent replicates were se-
lected, resulting in a total of 405 (= 34× 5) input trials. MiniSat+ [3] was used as a 0-1 ILP
tool to solve the PedRPoly model.

In order to analyze the accuracy of the methods, two different errors were considered.
The switch error rate measures the percentage of possible switches in haplotype orientation,
used to recover the correct phase in an individual [14]. Missing alleles are not considered for
computing the switch error. The missing error rate is the percentage of incorrectly inferred
missing data [16].

Figure 1 presents two scatter plots comparing the switch error and missing error rates for
PedRPoly and PedPhase. Each problem instance corresponds to a point in the plot, where
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Table 4. Switch Error Rate and Missing Error Rate for PedRPoly and PedPhase in sets of instances
with different parameters (n is the number of genotypes of the instance, with n = 10 · f where f is the
size of each pedigree, and m is the number of sites of each genotype).

Error Rate
Set Switch Error Rate Missing Error Rate

PedRPoly PedPhase PedRPoly PedPhase
Missing Rate 1% 0.0115 0.0143 0.0361 0.0411

10% 0.0190 0.0232 0.0382 0.0488
20% 0.0304 0.0437 0.0456 0.0625

Recombination Rate 0.1% 0.0157 0.0221 0.0393 0.0472
0.5% 0.0212 0.0267 0.0398 0.0506
1% 0.0240 0.0324 0.0407 0.0546

Pedigree Ped1 (n=150) 0.0194 0.0245 0.0428 0.0469
Ped2 (n=290) 0.0199 0.0284 0.0355 0.0471
Ped3 (n=170) 0.0217 0.0283 0.0415 0.0584

Population A (m=9) 0.0116 0.0210 0.0428 0.0469
B (m=5) 0.0450 0.0482 0.0355 0.0471
C (m=17) 0.0044 0.0120 0.0415 0.0584

the x-axis represents the error rate of the PedRPoly approach and the y-axis represents the
error rate of the ILP PedPhase approach.

The switch error rate of the methods is compared in the left plot of Figure 1. The switch
error of PedRPoly is smaller than the switch error of PedPhase for 55.3% of the problem
instances. The switch error of PedRPoly is larger than the switch error of PedPhase for
16.8% of the problem instances, and for the remaining 27.9% the error is the same for both
methods.

With respect to the missing error rate (right plot of Figure 1), it is clear that PedRPoly
is more accurate than PedPhase. Indeed, the missing error of PedRPoly is smaller than
the missing error of PedPhase for 64.7% of the problem instances. The missing error of
PedRPoly is larger than the missing error of PedPhase for 18% of the problem instances,
and for the remaining 17.3% instances the error is the same for both methods.

Table 4 presents the accuracy results organized by parameter value. Each value is the
average of the error rate for the 135 instances generated with the corresponding parameter
value. We conclude that PedRPoly has a smaller (switch and missing) error rate on every
class of instances.

In addition, the HIPP solver, RPoly, has also been tested. RPoly does not take into con-
sideration the pedigree information, and therefore, has in general higher error rates which
can go up to 50% in some cases. Moreover, RPoly is not able to solve around 25% of the
instances within a time out of 10000 seconds (in particular the instances with higher missing
rates).

Finally, we have compared the number of distinct haplotypes in the PedRPoly solution
and the PedPhase solution with the number of haplotypes in the real solution. PedRPoly
has the same number of haplotypes as the real solution for 64.7% of the instances and for
96.8% of the instances the number of haplotypes in the PedRPoly solution differs by less
than 3 haplotypes from the number in the real solution. PedPhase solutions are less similar
to the real solutions with respect to the number of distinct haplotypes. For only 23.7% of

34



the instances, the number of haplotypes in the PedPhase solution is equal to the number of
haplotypes in the real solution, and for 50% of the instances, the number of haplotypes in
the PedRPoly solution differs by more than 2 haplotypes from the real solution.

Regarding the efficiency of PedRPoly and PedPhase methods, while PedPhase is able
to solve each instance in a few seconds, PedRPoly can take a few hours. Improving the
efficiency of PedRPoly is the main short term goal.

5 Conclusions and Future Work

This paper presents a new method for inferring haplotypes from genotype data of families
from the same population. The proposed method (called PedRPoly) integrates the minimum
recombinant and the pure parsimony principles, two relevant constraint based haplotyping
approaches. Thus, PedRPoly can take into account both the family information and the
population information. Experimental results show that PedRPoly is actually more accurate
than PedPhase which only uses the minimum recombinant principle.

Future work directions include improving the efficiency of the PedRPoly method and
testing the method in larger and real data sets.
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Abstract. Here the authors overview an ongoing effort to extend satisfiability-based
methods for haplotype inference by pure parsimony (HIPP). This genome analysis
task, first formulated as a boolean satisfiability problem by Lynce and Marques-Silva
[12], has been performed successfully by modern SAT-solvers. But, it is not as widely
used as some better-publicized statistical tools, such as PHASE [19]. This paper
presents the authors’ assessment of the current situation, and a preliminary statement
of intention concerning their aims in this area. Namely, the situation suggests three
categories of improvements for making HIPP more widely-used within the biological
community: 1) the ability to handle larger problems; 2) more detailed empirical under-
standing of the accuracy of the “pure parsimony” criterion; and 3) additional criteria
and methods for improving on this level of accuracy.

1 Background

As detailed in a recent overview paper [11], the haplotype inference problem is defined
over a population of individuals represented by their respective genotypes. Each genotype
can be viewed as a sequence of nucleotide pairs, where the two values of each pair are split
across the individual’s two chromosomes as inherited from their two parents. Much of the
genetic variation between individuals consists of point mutations at known sites within this
sequence, known as single nucleotide polymorphisms (SNP’s). Thus, a genotype can be
represented (with loss of information) as a sequence of nucleotide pairs at successive SNP
sites.

In particular, at each such site, an individual might have two copies of the “minor
allele”– in this case, the presumably mutated or at least rarer of the two possible nucleotide
values. At this site the individual is then homozygous (minor). Similarly, a SNP site is real-
ized on each chromosome by the nucleotide value that is most common for the species then
the site is homozygous (major) for this individual. The third possibility is that one of the
individual’s chromosomes has the major allele at a given site, while the other chromosome
has the minor allele at that site–then the genotype is heterozygous at the site in question.
Notationally, the first case can be represented by the character ‘0’, the second by ‘1’, and
the third, heterozygous case, by ‘2’. So, the sequence “0102” indicates an individual with
two minor alleles at both the first and the third SNP sites measured by a particular study,
and two major alleles at the second site. At the fourth site, we know that one chromosome
exhibits the major allele and the other exhibits the minor. Thus, an individual’s genotype is
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well-defined by the sequences of its two constituent chromosomes; these two individually
inherited sequences are called haplotypes. If we overload ‘0’ and ‘1’ to indicate a single
minor or single major allele in a particular haplotype, then we can denote that the genotype
“0102” arises from the two haplotypes “0100” and “0101”.

Conversely, though, a genotype with more than one heterozygous site can be explained
by multiple pairs of haplotypes, as the major and minor alleles at all heterozygous sites in
the genotype can be permuted across corresponding sites in the two haplotypes. More con-
cretely, the genotype “02122” could be realized by the pairs “00100”/“01111”, “00101”/“01110”,
“00110”/“01101”, or “01100”/“00111”. (Naturally, the term “pair” is used colloquially here,
and does not signify any sense of ordering within the haplotype sets of size two that arise
in this domain.) Accordingly, there are 2k−1 candidate haplotype pairs for explaining a
genotype with k heterozygous sites.

In practice, this distinction is made relevant by the lack of any practical experimental
method to measure an individual’s two haplotypes instead of its genotype; in other words,
the machinery can identify sites at which the two haplotypes have opposing values, but
cannot tell which values are grouped together on which chromosome. The goal of haplotype
inference is to guess the most likely haplotypes that generated a given set of genotypes.

2 Underlying Biological Principles

How can one answer to the haplotype inference problem be preferred to any other? Because
the ultimate goal is to accurately predict haplotypes appearing in a particular subject (i.e. hu-
man) population, haplotype inference frameworks must apply standards that seek to model
the types of phenomena that actually drove the true state of affairs in the evolution of the
subject species’ genome. In other words, human haplotypes are not drawn uniformly from
the space of all possible pairs that could explain human genotypes. Rather, under the coales-
cent model of evolution there should be only a small number of human haplotypes that were
recombined and mutated to produce any of the genotypes within a given haplotype infer-
ence problem instance. Thus, early researchers used greedy methods to try to minimize the
set of answers to a haplotype inference problem [3], while later systems integrated models
based on “perfect phylogeny” [9] or other hierarchical organizations of answer haplotypes
[22]. The most widely-used techniques at this point in time integrate empirical statistical
measures of likely haplotypes [14,2,16,19,17], by analyzing the population in question, or
consulting outside sources [20]. Such approaches may not require that the inferred set of an-
swer haplotypes can be arranged into a particular evolutionary structure, but they all require
the haplotype set to be maximally likely according to a particular statistical model that has
been fit to the problem and/or outside frequency data.

On the other hand, the “pure parsimony” methodology seeks to capture such phenom-
ena implicitly by asking directly for the smallest possible set of haplotypes that as a whole
can explain a given population of genotypes [8]. Methods that are based on this criterion
thus perform “HIPP”, indicating haplotype inference by pure parsimony. This pure par-
simony principle has been achieved optimally and efficiently by employing a variety of
satisfiability-based techniques on small to moderately-sized data sets of about 200 sites and
100 individuals [12,7,5,13]. However, aside from a preliminary and limited evaluation of
pure parsimony, which did not include such satisfiability-based techniques [21], the over-
all accuracy and general feasibility HIPP was for a long time somewhat unclear within the

38



biological community. In contrast, however, recent work based on satisfiability has made
it possible to generate all HIPP models, allowing the observation of (presumably) unex-
pected phenomena: empirical data sets have a large number of HIPP solutions, of which
possibly none match the actual known experimental solution [4]. (More informatively, the
sizes of true haplotype sets that were found in the studied experiments were close to the the
minimum found by HIPP, just not always exactly minimum.)

In short, satisfiability-based HIPP methods must demonstrate two forms of feasibility in
order to achieve wider adoption within the biological community: the empirical accuracy of
the pure parsimony principle itself, and the efficiency and scalability of SAT methods for
achieving this parsimony criterion. While SAT-based techniques can achieve optimal parsi-
mony, on reasonably large data sets, they still cannot be applied to the massive collections
characteristic of more popular biological applications that may require on the order of half
a million sites. Addressing the issue of scalability will not only enable the assessment of
model accuracy and solver efficiency, but can additionally lead to more accurate results.
This is because multiple minimum haplotype sets can explain the same population of geno-
types [11], but some of them can be safely considered more likely a priori. For instance,
solution sets whose members are more similar to each other are more realistic with respect
to evolutionary theory [19,17], and certainly one must certainly be preferred a posteriori
with respect to the truth–in the real world there was a single haplotype set that produced a
set of genotypes (and this set may or not be minimum.) So while the initial goal is evalu-
ation of the HIPP principle and HIPP solvers, and the prerequisite goal is improved solver
scalability, in pursuing these we would like to simultaneously attain the overarching goal of
making the most accurate predictions possible, as opposed to merely minimal ones.

We propose to do this by making finer-grained use of biological principles in design-
ing SAT-based methodologies for HIPP. One prominent example of such phenomena would
be “linkage disequilibrium”, or correlation between sites within a sequence [18]. The se-
quential and mostly non-random nature of genotypes and haplotypes are at core of many
of the optimizations and models that underly statistical alternatives to HIPP; finding a way
to exploit them within a discrete reasoning framework would make HIPP competitive in
efficiency and accuracy. Three proposals for doing so are outlined in the next section.

3 Proposals for Extending the Satisfiability-Based HIPP Framework

In this section we propose three general types of improvements to the HIPP framework that
can make it competitive to the current methods of choice within the biological community.

– Exploiting sequential structure to improve scalability. The best-performing (and
most widely-used) statistical systems [14,2,19] for haplotype inference utilize explicit
or implicit variants of the “partition ligation” scheme of Niu et al. [15]. The basic idea is
to escape the combinatorial explosion of considering the entire space of possible hap-
lotypes for a given sequence, and instead break the sequence into blocks. Each such
block is small enough to be solved efficiently and to high accuracy; they are then re-
combined heuristically through a polynomial-time merging scheme. With the merging
scheme comes a loss of optimality; in the case of HIPP we may not get the small-
est possible explaining haplotype set by means of this scheme. But, the insight of the
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partition ligation scheme is that evolution does not create haplotypes uniformly at ran-
dom over all possible explanations for the human genotype, and in practice the loss
in optimality has proved negligible in comparison to the gains in accuracy for statis-
tical methods [15,14,19]. For beyond being biologically justifiable, block partitioning
can actually produce more accurate overall results because each block can be solved
to higher standards of likelihood using more computationally expensive methods. For
instance, a statistical approach based on MCMC sampling can choose to perform vastly
more iterations on a more complex model within the confines of a small block, while
realistically hoping to retain much of the benefit during the merging process [19]. Ap-
plying this framework to SAT-based approaches can provide similar gains, whether
using parsimony alone or integrating statistical information in solving blocks. At this
point, we are able to solve individual blocks using the same sorts of methods as Lynce
et al., and are experimenting with both a direct translation of Niu’s partition ligation
scheme, and also with alternative approaches that seek to optimize specific objective
functions when performing the merging.

– Assess the accuracy of HIPP on large-scale data. Because it is experimentally diffi-
cult to determine ground truth haplotype phase from real data [1], most empirical stud-
ies have been evaluated the accuracy of various inference methods using data sets that
cover up to around 100 SNP sites [14,4]. However, one of the original, highest-level
applications for haplotype inference is as a first step genome-wide association stud-
ies; HIPP-based approaches are not alone in facing a new hurdle in handling problems
with hundreds of thousands of sites. When HIPP is able to handle larger data sets, it
will be possible to directly compare its accuracy with other, more-popular approaches.
This will allow an assessment of the model’s strengths and weaknesses and inform any
attempts to improve this accuracy. At this point, SAT methods have been highly suc-
cessful at solving HIPP, but it remains to be seen whether the resulting answers are
themselves successful at modeling the human genome–as mentioned previously here
and elsewhere [11,4], there can be many minimum sets that all qualify as HIPP solu-
tions, while some of these are much more empirically likely than others. In empirical
studies with a limited number of sites, the true set of haplotypes has not tended to be
absolutely minimum in size [4]. Characterizing which types of these solutions usually
turn out to be more accurate will go a long way to improving the parsimony model’s fit
to real populations.

– Exploiting linkage disequilibrium to improve accuracy. In the same spirit as the
first two points, there are important correlations between various regions of the vast
majority of a species’ haplotypes, due to the recombination and mutation processes that
drive evolution. To compete with statistically-oriented tools, HIPP can be extended to
encompass the same sort of empirical information concerning such correlations [6,10].
This may entail a weighted SAT or a MAXSAT formulation that favors solutions that
adhere to stronger correlations that have been observed from the same sources of data as
used by the competitor techniques. This has motivated to types of developments within
the system’s SAT-solving framework. The first is to express statistical information as
weights that direct the solver to prefer one model over another; the second is to integrate
such information into heuristics that guide the search to efficiently optimize over such
preferences.
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4 Conclusion

The authors have begun to implement block decomposition within the SAT-based HIPP
framework, but this description of research is decidedly preliminary and strictly for expos-
itory purposes. Once the system is able to handle large problems, the next step will be to
study its accuracy, especially in terms of adding additional solution criteria to pure parsi-
mony. The concluding step will be to use information derived from individual problem-
instance and/or reference data to actually achieve such criteria. It would be a great oppor-
tunity to be able to discuss such plans with others who are working on this problem and
related areas1!
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Abstract. Lattice protein models, as the Hydrophobic-Polar (HP) model, are a com-
mon abstraction to enable exhaustive studies on structure, function, or evolution of
proteins. A main issue is the high number of optimal structures, resulting from the
hydrophobicity-based energy function applied. We introduce an equivalence relation
on protein structures that correlates to the energy function. We discuss the efficient
enumeration of optimal representatives of the corresponding equivalence classes and
the application of the results.

1 Introduction

Proteins are the central players in the game of life. They are involved in almost all processes
in cells and organisms, comprising replication, metabolism, and movement. To be able to
perform their specific functions, proteins have to adopt a certain fold or structure, which is
encoded by the protein’s sequence. Thus, knowledge of a protein’s structure elucidates the
mechanisms it is involved.

Currently, it is not possible to calculate a protein’s functional fold from its sequence
nor to simulate the whole folding process in detail. Simplified protein models are used
to reduce the computational complexity. A common abstraction are lattice proteins [5,7].
Here, the structure space a protein can adopt is discretized and allows for efficient folding
simulations [19,13]. Nevertheless, it is difficult to determine minimal energy structures,
which represent the functional folds in such models. Even in the most simple Hydrophobic-
Polar (HP) model [14], the optimal structure prediction problem stays computationally hard
(NP-complete) [4]. Despite this complexity, a fast calculation of non-symmetrical optimal
structures in the HP model is possible using constraint programming techniques applied in
the Constraint-based Protein Structure Prediction (CPSP) approach [3,20,22,15].

Recently, we have introduced a significantly improved local search scheme for lattice
protein folding simulations [29] using a full Miyazawa-Jernigan energy potential [11]. We
take advantage of the efficient CPSP approach and initialize the folding simulations with
optimal structures from the simpler HP model. This incorporates the phenomenon of hy-
drophobic collapse of protein structures, a driving force at the beginning of the folding
process [1]. The already compact structures from the CPSP application form the starting
point of the folding driven by more complex interactions. This scheme outperforms folding
simulations using a standard initialization with random structures and yields better results
within shorter simulation time [29]. To increase efficiency of local search methods, usually
many optimization runs from different starting points are done. Since the set of all HP-
optimal structures is usually too large as a starting set, we are interested in a smaller subset
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that still covers the structural diversity of the whole set as good as possible. We achieve this
by enumerating optimal structures that maintain a given minimal distance to each other.

Due to the hydrophobicity-focusing energy function, proteins in HP models show on
average a huge number of optimal structures. Since polar residues do not contribute to the
energy, optimal structures usually show a much higher variation in the placement of polar
than hydrophobic residues.

Here, we introduce an equivalence relation to partition the set of (optimal) structures
into according classes. Two structures are defined to be equivalent, iff they do not differ
in the placements of their hydrophobic residues. We introduce an extension to the CPSP
approach that enables an efficient calculation of the number of equivalence classes of opti-
mal structures via enumerating one representative per class. The approach is presented for
backbone-only and side chain incorporating HP models. We show that a sequence’s number
of representatives (later defined as core-degeneracy) is several magnitudes smaller than the
overall number of all optimal structures (degeneracy).

Thus, the set of optimal representatives is well placed to be used within the combined
approach of CPSP and local search [29]. Furthermore, we propose another application of
the equivalence classes: Since the equivalence relation is highly correlated to the HP energy
function, the number of classes might be a better measure of structural stability than a
sequences’ degeneracy [12].

2 Preliminaries

A lattice protein in the HP model is specified by its sequence S ∈ {H,P}n, where H
and P denote hydrophobic and polar monomers, respectively. The structure positions are
confined to nodes of a regular lattice L ⊆ Z3. A valid backbone-only structure C ∈ Ln of
length n is a self-avoiding walk (SAW) in the underlying lattice L, i.e. it holds connectivity
∀1≤i<n : (Ci − Ci+1) ∈ NL and self-avoidance ∀1≤i<j≤n : Ci 6= Cj , where NL denotes
the set of distance vectors between neighbored points in L. An example is shown in Fig. 1a).
The energy of a lattice protein structure is given by non-consecutive HH-contacts:

E(S,C) =
∑

1≤i<j≤n

(i+1)<j

{
−1 : (Ci − Cj) ∈ NL ∧ Si = Sj = H

0 : otherwise
(1)

An optimal structure minimizes the energy function. The number of optimal structures is
denoted as degeneracy of a sequence and is an important measure of structural stability [12].

The CPSP-approach by Backofen and Will [3] enables the calculation of a sequence’s
degeneracy without full structure space enumeration [15]. It utilizes the observation that op-
timal structures show a (nearly) optimal packing of H monomers. Thus, the CPSP-approach
can be sketched in two major steps:

1. H-core construction: Given the number nH of H monomers from the target sequence S,
all optimal packings of nH monomers are calculated. These optimal H-cores show
the maximal number of contacts possible. For a fixed sequence S and the correspond-
ing nH , we denote the set of optimal H-cores withO. The calculation ofO is computa-
tionally difficult on its own and was solved by us using constraint programming [2,3].
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Fig. 1. Optimal structures of HPPHHPPPHPHHPHHPPHPHPPHHHPHHPPHPHPH in the face-
centered-cubic lattice. (a) backbone-only model with energy -50, (b) side chain model with energy -55.
Colors: green - H monomers, gray - P monomers, red - backbone in side chain models. Visualization
by HPview from CPSP-package [22].

2. Structure threading: Given S andO only structures are enumerated where the H monomers
of S are confined to an optimal H-core O ∈ O, i.e. they are “threaded” through
the H-cores. Since all O show the maximally possible number of contacts between
H monomers, each resulting structure is optimal according to Eq. 1 as well. The struc-
ture threading is done by solving a Constraint Satisfaction Problem (CSP) for eachO ∈
O as given below.

Since step 1 depends only on the number of H monomers nH and no further property of
any sequence, we can precalculate the H-cores for different nH and store them in a database.
This significantly speeds up the approach and reduces the computation time to step 2, i.e.
the structure threading.

It might happen, that we find no appropriate structure threading for a sequence S and
the according set of optimal H-cores O. Thus, we revert to the set of the best suboptimal
H-cores O′ that show at least one contact less than an optimal H-core O ∈ O and iterate
the procedure. Still it holds: the first successive structure threading is an optimal structure,
since no H monomer packing with more contacts was found before. Further details on the
CPSP approach in [3].

The CSPs solved in step 2 are given by (X ,D, C), where we denote the set of vari-
ables X , their domains D, and a set of constraints C. For each monomer Si ∈ S a vari-
able Xi ∈ X is introduced. The SAW is modeled by a sequence of binary neighboring
constraints neigh(Xi, Xi+1) and a global alldiff(X ) to enforce the self-avoidingness. The
optimal H-core O ∈ O is used to define the domains D: ∀i:Si=H : D(Xi) = O and
∀i:Si=P : D(Xi) = L \ O. Thus, if we find a solution of such a CSP, i.e. an assignment
ai ∈ D(Xi) for each variable that satisfies all constraints in C, it will minimize the energy
function in Eq. 1, i.e. an optimal structure.

3 Representative Optimal Structures

Revisiting the CSP we can see, that P monomers are constrained only by the SAW con-
straints. Imagine a sequence with a long tail of P monomers. Each valid placement of the
subchain in front of the tail can be combined with a combinatorial number of possible SAWs
of the tail. This leads to the immense degeneracy in the HP model.
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Therefore, we set up an equivalence relation H∼ on structures (Eq. 2) that decomposes
the set of all (optimal) structures into equivalence classes. In the following, the number of
equivalence classes of optimal structures is denoted as core-degeneracy. As given by Eq. 2,
structures from different equivalence classes differ in at least one H monomer placement.

C
H∼ Ĉ ⇔ ∀i|Si=H : Ci = Ĉi. (2)

The representative enumeration (that corresponds to core-degeneracy calculation) can
be done via an extension of the CPSP approach presented in Sec. 2. Instead of calculating
all optimal structures, we want to calculate only one representative per equivalence class.
This has to be ensured at two stages: (I) the solutions of each single CSP for a given H-
core have to be different according to Eq. 2, and (II) the solutions from two CSPs for two
different H-cores have to be different as well. The second condition (II) holds by definition,
because H∼ is only defined on the H monomer placements that are constrained by different
H-cores fromO (differing in at least one position). In the following, we will discuss how to
achieve the difference for solutions of a single CSP (I).

Note that the core-degeneracy, i.e. the number of different placements of H-monomers,
or core-configurations, in optimal structures of a sequence, is not equal to the number of
different H-cores, which are the sets of lattice points that are occupied by H-monomers.
The latter number is easily obtained from the standard prediction algorithm, described in
Sec. 2. It equals the number of cores, where the sequence is successfully threaded on.

Restricted Search for Enumeration of Representatives

The standard way to solve a CSP is a combination of domain filtering (i.e. constraint prop-
agation) and depth first search. This results in a binary tree where each node represents a
subproblem of the initial CSP (root) and edges represent the additional constraints added
to derive the two subproblems from its predecessor node (CSP). The constraints c and ¬c
added to derive the leave nodes of a certain CSP are often of the form c = (Xi ≡ d) by
selecting a variable Xi from X and a value d ∈ D(Xi) according to some heuristics. The
constraint solver traverse the binary tree until a solution was found or an inconsistency of a
constraint from C was detected.

Therefore, a straightforward way to enumerate only one representative for each equiv-
alence class can be sketched as follows: first, we restrict the search of the solving process
onto the H associated variables. Then, we perform a single check for satisfiability, i.e. search
for a single assignment of P monomer variables fulfilling all constraints in C. Thus, we get
only one P monomer placement for a given H monomer assignment if any exists.

The drawback of this approach is that we restrict the variable order of the search heuris-
tics. But the performance of the CPSP approach mainly depends on the search heuristics
applied to select a certain variable or value from its domain. It turned out that a mixed
assignment of H and P associated variables yields the best runtimes. These heuristics can
not be applied within the sketched procedure where we have to first assign H-associated
variables, then P-associated ones. Thus, a lower CPSP performance is expected. But, we
have to do less search which results in much faster runtimes than enumerating all optimal
structures.
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4 Representative Optimal Structures with Side Chains

Recently, we have introduced the extension of the CPSP approach [20] to HP models in-
cluding side chains [7]. Here, each amino acid of a protein sequence is represented by two
monomers: Cbi representing the backbone atoms, and Csi representing the atoms of the side
chain. Beneath the SAW condition on the backbone monomers Cbi , we constrain each side
chain to be neighbored to its backbone, i.e. ∀1≤i≤n : (Csi − Cbi ) ∈ NL. An example struc-
ture is given in Fig. 1b). The applied energy function E′ exploits only HH-contacts of side
chain monomers Csi :

E′(S,Cs) =
∑

1≤i<j≤n

{
−1 : (Csi − Csj ) ∈ NL ∧ Si = Sj = H

0 : otherwise
(3)

Therefore, the side chain models show an even higher degeneracy than the backbone-
only models discussed so far, since all backbone monomers Cbi are unconstrained by the
energy function as well. Thus, an equivalence relation

H
≈ that focuses on the monomers

constrained by the energy function is even more striking in HP models including side chains.
The relation

H
≈ is given by

(Cb, Cs)
H

≈ (Ĉb, Ĉs)⇔ ∀i:Si=H : Csi = Ĉsi (4)

Therefore, we will enforce that structures from one equivalence class show the same
H monomer side chain positioning. The CPSP approach for HP models including side
chains differs only in the CSP formulation from the original approach for backbone-only
models [20]. This allows for the application of the same approach discussed in the previ-
ous section to enumerate non-equivalent optimal structure representatives. Thus, we restrict
search to the H associated side chain variables first and only check for satisfiability on the
remaining variables.

5 Results and Discussion

We exemplify the enumeration of representatives for backbone-only and side chain models.
We focus on the comparison of the resulting core-degeneracy of a sequence and its overall
number of optimal structures, i.e. degeneracy, because we are interested in a reduced set
of optimal structures, e.g. for local search initialization (see introduction). All following
results are given for HP-sequences of length 27 in 3D cubic lattice. Since the enumeration
and check of all 227 sequences (> 108) is computationally not feasible, we restrict each
study to a large randomly chosen subset of 105 and 104 sequences, respectively.

The program HPREP implements the approach from section 3. It is integrated into the
CPSP-tools package [22] version 2.4.0 and available online1.

As discussed in Sec. 2, the structure threading step of the CPSP approach screens
through a precomputed list of appropriate H-cores in decreasing number of contacts stored
in a database. Therefore, it might occur that the available list from the database is exceeded
without any solution, i.e. no optimal structure was computed. Still, the energy of the last

1 http://cpsp.informatik.uni-freiburg.de
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Fig. 2. Backbone-only models : Histogram of core-degeneracy (green) and degeneracy (red) with cut-
off ≤ 106. (Plots refer to 3D cubic lattice and sequence length 27.)

H-core tried is a close lower bound on the energy this sequence can adopt. In the following,
B denotes the subset of sequences where the current H-core database is not sufficient and
thus the CPSP approach can give only a lower bound for now. The number of sequences
in B is quite small. It is reasonable to assume that the degeneracy distribution among B is
the same as for the remaining sequences or on average even higher.

Backbone-only models

We tested 105 random sequences in the backbone-only model in the 3D cubic lattice.
Here, only 66% show a degeneracy below 106. B comprises about 4% of the sequences. The
remaining 30% can adopt even more than 106 structures with minimal energy.

Figure 2 summarizes the results: in red the degeneracy and in green the core-degeneracy
distribution with cut-off 106 is presented. Thus, in red the degeneracy distribution comprises
66% of the sequences as given above. In contrast, all sequences show a number of optimal
equivalence classes below 106 (in green)! The average degeneracy is reduced from 124800
(with cutoff 106) to a mean core-degeneracy of 4856. This reduction within two orders of
magnitude results in reasonably small sets of representative structures e.g. to be utilized
in local search initializations. Furthermore, the enumeration of representatives is on aver-
age six times faster than the enumeration of all optimal structures with a mean runtime of
2 seconds (Opteron 2356 - 2.3 GHz).

This increase of small sets of representatives compared to the complete sets of optimal
structures shows the advantage of the approach: core-degeneracy does not show the huge
combinatorial explosion of degeneracy. This gets even more striking in HP models including
side chains, as shown in the next section.

Models including side chains

The degeneracy in HP models including side chains is much higher than for backbone-
only models. This results from the simple energy function (Eq. 3) that does not constrain the
backbone or P monomers. Therefore, an immense number of optimal structures is present.
From the 104 HP-sequences tested only 408 show a degeneracy below 106. B comprises
again about 3.1% of the sequences.
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Fig. 3. Models with side chains : Histogram of the core-degeneracy (green) and degeneracy (red) with
cut-off ≤ 106. Note: only 408 sequences out of 104 showed a degeneracy below 106 as given in the
text. (Plots refer to 3D cubic lattice and sequence length 27.)

When investigating core-degeneracy the picture changes completely: All of the sequences
tested have less than 106 representatives. Figure 3 summarizes the distribution. The average
number of representatives is about 1550, which is again at least three orders of magnitude
smaller than the average degeneracy. Since we have only a very rough lower bound of 106

on the average degeneracy (due to the cut-off), the real reduction ratio is expected to be even
higher.

6 Conclusions
The introduced equivalence relations for HP models enables a energy function driven parti-
tioning of structures. The presented CPSP approach extension enables an efficient calcula-
tion of representatives for all equivalence classes of optimal structures, i.e. calculation of a
sequence’s core-degeneracy. Using our implementation HPREP, we showed that sequences
show several orders of magnitudes less optimal equivalence classes than optimal structures.
This is most striking in models including side chains.

The sets of representatives are usually small. Furthermore, representatives show dif-
ferent hydrophobic core arrangements. Therefore, they are well placed to be used for the
initialization of local search procedures that utilize more complex energy functions [29].
This emulates the hydrophobic collapse in the folding process.

Since a sequence’s degeneracy is a measure of structural stability [12], we propose an-
other application of our approach. The core-degeneracy might be used as a more reasonable
measure of stability in the HP model compared to degeneracy. It ignores the HP model spe-
cific degeneracy blow-up due to unconstrained subchains of P monomers (see section 3).
Thus, a structural stability analysis could be based on the presented equivalence classes
instead of all possible structures.
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Abstract. The simulation of a protein’s folding process is often done via stochas-
tic local search, which requires a procedure to apply structural changes onto a given
conformation. Here, we introduce a constraint-based approach to enumerate lattice
protein structures according to k-local moves in arbitrary lattices. Our declarative de-
scription is much more flexible for extensions than standard operational formulations.
It enables a generic calculation of k-local neighbors in backbone-only and side chain
models. We exemplify the procedure using a simple hierarchical folding scheme.

1 Introduction

The in silico determination of a protein’s functional fold is a well established problem in
bioinformatics. Since X-ray or NMR studies are still time consuming and expensive, com-
putational methods for ab initio protein structure prediction are needed. Despite research
over the last decades, a direct calculation of minimal energy structures in full atom res-
olution is currently not feasible. Thus, heuristics and a wide variation of protein models
have been developed to identify fundamental principles guiding the process of structure
formation. A common abstraction of proteins are lattice protein models [3,13,14,20]. Their
discretized structure space enables efficient folding simulations [29,31] while maintaining
good modelling accuracy [25].

Folding simulations are often based on stochastic local searches, e.g. Monte Carlo sim-
ulations [29]. Different procedures, so called move sets, have been developed to calculate
the structural changes along the simulation, i.e. to enumerate the structural neighborhood
of a certain structure. A method often applied in literature are k-local moves [28] that allow
for structural changes within a successive interval of fixed length k. They are discussed in
detail in Sec 3. Dotu and co-workers have used local moves for backbone-only HP mod-
els within a constraint-based large neighborhood search for optimal protein structures [9].
Lesh et al. introduced pull moves [15] that are widely used in recent studies [19,29]. Pivot
moves allow for the rotation or reflection of subchains at an arbitrary Pivot position of the
structure [17], while Zhang et al. suggested a sequential regrowth of structure fragments to
enhance folding simulations [31].

All named move sets are currently restricted to backbone-only lattice protein models, i.e.
only the Cα-trail of the protein is modeled. For more realistic protein models incorporating
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side chains, often a combination of different move sets is applied. Betancourt combined
Pivot moves on the backbone with a new FEM move set [5], while Dima and Thirumalai
have used a combination of 2-local moves on the backbone with a simple relocation of the
side chain [8]. An exception is the advanced CABS model by Kolinski and co-workers [13],
which represents the side chain in higher detail and requires more complex moves.

Here, we introduce a generic and flexible approach to enable folding simulations in
backbone-only and side chain models using any k-local moves (i.e. any interval length k)
in arbitrary lattices. The constraint programming (CP) based formulation focuses on a de-
scription of the targeted structural neighbors instead of an operational encoding of the moves
possible. The introduced scheme is therefore easy to extend with new directives or can be
used for other applications, e.g. fragment re-localization [31], as discussed later. Beneath
applications in studies of the whole energy landscape [21], the approach is well placed to
be applied within a local search following the framework of Pesant and Gendreau [26]. We
apply our move set for side chain models within a simple folding simulation procedure in
the style of [29] and evaluate the results with known protein structures.

2 Preliminaries

Given a lattice L ⊆ Z3 and an according neighborhood relation L∼ between coordinates
of L. A backbone-only lattice protein of length n is described by (S,C) where S ∈ Σn de-
notes the sequence over some alphabetΣ (e.g. the 20 proteinogen amino acids) andC ∈ Ln
the lattice nodes occupied. A valid lattice protein structure satisfies connectivity of succes-
sive monomers ∀1≤i<n : Ci

L∼ Ci+1 and their self-avoidingness ∀1≤i<j≤n : Ci 6= Cj .
A side chain lattice protein is defined by (S,Cb, Cs), i.e. a sequence S ∈ Σn, the back-
bone positions Cb ∈ Ln and the side chain positions Cs ∈ Ln. The side chain posi-
tion Cs represents the centroid of the amino acid’s side chain atoms. A valid lattice pro-
tein structure including side chains satisfies connectivity of successive backbone monomers
∀1≤i<n : Cb

i
L∼ Cb

i+1, the connection of backbone and side chain for each amino acid
∀1≤i≤n : Cb

i
L∼ Cs

i , and the selfavoidingness of all monomers ∀1≤i<j≤n : Cb
i 6= Cb

j ∧Cs
i 6=

Cs
j ∧ Cb

i 6= Cs
j ∧ Cb

i 6= Cs
i . We consider the contact based energy functions Eb(S,C) =∑(Ci

L∼ Cj)
1≤i<j≤n e(Si, Sj) for backbone-only andEs(S,Cb, Cs) =

∑(Cs
i

L∼ Cs
j)

1≤i<j≤n e(Si, Sj) for side
chain lattice proteins for a given energy contribution function e : Σ×Σ → R. Note, the en-
ergy function for side chain proteins considers (as in [7]) the contacts between side chain po-
sitions only! e20 denotes an empirical 20 amino acid contact potential as described in [4,23].
eHP represents the energy contribution function of the Hydrophobic-Polar (HP) model [14],
i.e. it returns −1 if both amino acids are hydrophobic, 0 otherwise. Our hydrophobic/polar
(H/P) assignment follows [29]. An optimal structure minimizes the energy function. In
the following, we denote a structure HP-optimal if it minimizes the energy function based
on eHP . Figure 1 exemplifies HP-optimal structures for both lattice protein models. In the
following, we assume a scaled lattice such that neighbored positions in the lattice have a
distance of 3.8Å, the average Cα-atom distance in proteins.
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a) b)

Fig. 1. HP-optimal structures of HPPHHPPPHPHHPHHPPHPHPPHHHPHHPPHPHPH in the face-
centered-cubic lattice. (a) backbone-only model with energy -50, (b) side chain model with energy -55.
Colors: green - H monomers, gray - P monomers, red - backbone in side chain models. Calculation
and visualization are done using the CPSP-package [22].

3 Constraint-based Local Move Set Definition

To enable folding simulations we need a definition of structural changes that encodes the
structural neighborhood of a given lattice protein structure. Here, we follow the idea of k-
local moves, that confine the difference between the initial and the neighbored structure to a
consecutive interval of maximal length of k. Therefore, we define the k-neighborhoodNk(C)
of a given structure C as:

Nk(C) =
{

valid structures C ′ | ∃1≤s≤n : ∀j 6∈[s,...,(s+k−1)] : Cj = C ′j
}

(1)

In order to enumerate all valid structural neighbors C ′ ∈ Nk(C) of a given lattice
protein C, we have to enumerate the neighbors for all possible interval lengths 1 ≤ k′ ≤ k
and interval starts 1 ≤ s ≤ (n − k′ + 1). Since we want to calculate each neighboring
structure only once, we have to enhance the k-local move definition to strict k-local moves.
Here, we enforce in addition that both ends (C ′s and C ′s+k−1) of the successive interval of
length k are changed, i.e. a strict k-local move does not cover a k′-local move with k′ < k,
as a normal k-local move in accordance with Eq. 1 does. This ensures a unique enumeration
of structural neighbors for an increasing k′.

In the following, we will introduce the Constraint Satisfaction Problems (CSP) that
describe all valid structural neighbors C ′ ∈ Nk(C) of a given lattice protein C accord-
ing to strict k-local moves in a lattice L. A CSP is given by (X ,D, C), where we de-
note the set of variables X , their domains D, and a set of constraints C. A solution of a
CSP is an assignment ai ∈ D(Xi) for each variable that satisfies all constraints in C. To
simplify the presentation, we utilize a binary neighboring constraint neigh(X,Y ) that en-
sures ∀dx∈D(X) : ∃dy∈D(Y ) : (dx

L∼ dy) and vice versa. Furthermore, we use the global
all-different constraint by Régin [27] to enforce pairwise differences within a set of vari-
ables.

3.1 CSP for Backbone-only Models

Given a valid backbone-only lattice protein structureC of length n, a move interval length k ≤
n, and the start of the interval 1 ≤ s ≤ (n − k + 1). We define k variables Xi, one for
each position of the interval, with D(Xi) = L \ {C1, . . . , Cs−1, Cs+k, . . . , Cn}. These
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variables have to form a valid structure, therefore we post all-different(X1, . . . , Xk) and
∀1≤i<k : neigh(Xi, Xi+1). Since we describe a substructure, it has to be connected to the
interval borders: if s > 1 : neigh(X1, Cs−1) and if (s + k − 1) < n : neigh(Xk, Cs+k).
Finally, we enforce that both ends of the interval are different from the old placement, i.e.
X1 6= Ci and Xk 6= Ci+k−1, to enumerate strict k-local move neighbors only.

The presented CSP is similar to the work of Dotu et al. [9], but in contrast ensures the
uniqueness of each move. Thus, each neighbored structure is available only via a single
interval. This is of high importance to enable a non-redundant enumeration of a structure’s
neighborhood in the fold space to access its energy landscape [21].

3.2 CSP for Models Including Side Chains

Given a valid side chain lattice protein structure (Cb, Cs) of length n, a move interval
length k ≤ n, and the start of the interval 1 ≤ i ≤ (n − k + 1). We define k vari-
ables Xb

i and Xs
i , two for each position of the interval, with D(Xb

i ) = D(Xs
i ) = L \

{Cb
1, . . . , C

b
s−1, C

b
s+k, . . . , C

b
n, C

s
1, . . . , C

s
s−1, C

s
s+k, . . . , C

s
n}. To ensure a valid structure,

we enforce all-different(Xb
1, . . . , X

b
k, X

s
1, . . . , X

s
k), ∀1≤i<k : neigh(Xb

i , X
b
i+1), and ∀1≤i≤k :

neigh(Xb
i , X

s
i ). Since we describe a substructure, it has to be connected to the interval bor-

ders: if s > 1 : neigh(Xb
1, C

b
s−1) and if (s + k − 1) < n : neigh(Xb

k, C
b
s+k). Finally,

we warrant the strictness of the k-local moves and enforce that both ends of the interval
differ from the old backbone or side chain placement, i.e. (Xb

1 6= Cb
i ∨ Xs

1 6= Cs
i) and

(Xb
k 6= Cb

i+k−1 ∨Xs
k 6= Cs

i+k−1).

4 Application

In the following, we applied the introduced move set to folding simulations of side chain
lattice protein models in the 3D face-centered-cubic (FCC) lattice. In the FCC lattice, two
lattice points l1 and l2 are neighbored, if and only if
(l1 − l2) ∈ {±(1, 1, 0),±(1, 0, 1),±(0, 1, 1),±(1,−1, 0),±(1, 0,−1),±(0, 1,−1)}.
Thus, each point of the FCC lattice has 12 neighbored positions. k-local moves are known
to be non-ergodic for backbone-only models [16] depending on k, the used lattice, and the
protein length. We expect the same for models including side chains, but using the FCC
and an intermediate k should shift the problem to long chain lengths. Thus, we apply 3-
local moves, i.e. with a maximal interval length k = 3 such that up to 6 monomers are
moved (2 per amino acid). The implementation is based on Gecode [11]. To evaluate the
structural difference between two structures (Cb, Cs) and (Ĉb, Ĉs) we calculate the distance
and coordinate root mean square deviation (dRMSD and cRMSD) as given by Eq. 2 and 3,
respectively. The needed superpositioning utilizes Kabsch’s algorithm [12]. We apply the
contact based energy function Es that evaluates (only) side chain monomer contacts using
the e20 contact energy potentials from Sec. 2 similar to the backbone-only studies in [4,29].
In the following, we use C as an abbreviation for (Cb, Cs).

dRMSD :

√√√√√
∑

i<j(|Cb
i − Cb

j | − |Ĉb
i − Ĉb

j |)2 + (|Cs
i − Cs

j | − |Ĉs
i − Ĉs

j |)2

+
∑

i(|C
b
i − Cs

i | − |Ĉb
i − Ĉs

i|)2

n2
(2)

cRMSD :

√∑
i(|Cb

i − Ĉb
i|)2 + (|Cs

i − Ĉs
i|)2

2 · n (3)
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PDB ID - chain Sequences (original and HP transform)
1BAZ-A SKMPQVNLRWPREVLDLVRKVAEENGRSVNSEIYQRVMESFKKEGRIGA

PPHPPHPHPHPPPHHPHHPPHPPPPPPPHPPPHHPPHHPPHPPPPPHPP

1J8E-A GSHSCSSTQFKCNSGRCIPEHWTCDGDNDCGDYSDETHANCTNQ

PPPPHPPPPHPHPPPPHHPPPHPHPPPPPHPPHPPPPPPPHPPP

1RH6-A MYLTLQEWNARQRRPRSLETVRRWVRESRIFPPPVKDGREYLFHESAVKVDLNRP

HHHPHPPHPPPPPPPPPHPPHPPHHPPPPHHPPPHPPPPPHHHPPPPHPHPHPPP

1Z0J-B IEEELLLQQIDNIKAYIFDAKQCGRLDEVEVLTENLRELKHTLAKQKGGTD

HPPPHHHPPHPPHPPHHHPPPPHPPHPPHPHHPPPHPPHPPPHPPPPPPPP

2DS5-A GKLLYCSFCGKSQHEVRKLIAGPSVYICDECVDLCNDIIREEI

PPHHHHPHHPPPPPPHPPHHPPPPHHHHPPHHPHHPPHHPPPH

2EQ7-C LAMPAAERLMQEKGVSPAEVQGTGLGGRILKEDVMRH

HPHPPPPPHHPPPPHPPPPHPPPPHPPPHHPPPHHPP

2HBA-A MKVIFLKDVKGMGKKGEIKNVADGYANNFLFKQGLAIEATPANLKALEAQKQ

HPHHHHPPHPPHPPPPPHPPHPPPHPPPHHHPPPHPHPPPPPPHPPHPPPPP

PDB ID Cfit to CPDB g(Cfit) to Cfit

- chain n dRMSD cRMSD E(Cfit) E(g(Cfit)) dRMSD cRMSD
1BAZ-A 49 0.886 Å 1.725 Å -3.73 -31.51 4.050 Å 6.565 Å
1J8E-A 44 0.928 Å 1.939 Å -3.54 -30.76 3.865 Å 6.857 Å
1RH6-A 55 0.921 Å 1.791 Å 1.33 -38.17 4.192 Å 8.243 Å
1Z0J-B 51 0.917 Å 2.095 Å 2.05 -35.95 3.185 Å 6.640 Å
2DS5-A 43 0.901 Å 1.750 Å -4.35 -34.36 4.658 Å 7.755 Å
2EQ7-C 37 0.905 Å 1.813 Å -3.07 -20.58 2.328 Å 4.751 Å
2HBA-A 52 0.890 Å 1.780 Å -3.04 -30.62 3.224 Å 6.015 Å

Table 1. Used sequences, their HP transforms, length n, the quality of the fitted lattice protein model,
and the according energies.

We derived a protein data from the Pisces web server [30] on June 23rd 2009. Only com-
plete X-ray structures of 2.0Å resolution or better with an R-value of 0.3 that contain side-
chain data were considered. We used a 30% sequence identity cut-off. Since we are applying
a simple contact-based energy function we filtered for short globular shaped proteins. Ta-
ble 1 summarizes the used sequences and their corresponding Protein Data Bank (PDB)
identifiers etc.

For each full atom PDB structure CPDB , we derived a lattice protein structure Cfit that
minimizes the dRMSD to CPDB . This was done using LATFIT from the LATPACK-tools
package v1.7.04 [19]. Table 1 summarizes the resulting dRMSD and cRMSD values.

Since the applied energy function is still a rough abstraction of the forces that guide
the real folding process into CPDB , no energy minimizing folding strategy will find the
fitted lattice protein structure Cfit. Thus, we map Cfit to the according local minimum in
the energy landscape. The mapping is done via a steepest decent or gradient walk. Starting
from a given structure, at each step the neighbored structure with lowest energy is chosen
for the next step until no such neighbor exists. Therefore, a gradient walk ends in a local
minimum of the energy landscape, which we denote g(C) for a given start structure C.

4 Freely available at http://www.bioinf.uni-freiburg.de/Software/LatPack/
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PDB ID average values minimal values
- chain 〈E(CHP )〉 minE(g(CHP )) minE(r(CHP ))

1BAZ-A -10.67 -33.07 -34.60
1J8E-A -12.45 -29.33 -32.35
1RH6-A -13.09 -35.12 -37.59
1Z0J-B -13.42 -34.71 -37.69
2DS5-A -6.97 -31.00 -32.53
2EQ7-C -6.55 -21.64 -25.10
2HBA-A -11.07 -30.91 -35.56

PDB ID g(CHP ) vs. g(Cfit) r(CHP ) vs. g(Cfit)
- chain dRMSD cRMSD dRMSD cRMSD
1BAZ-A 4.736 Å 8.797 Å 4.762 Å 9.360 Å
1J8E-A 3.384 Å 7.508 Å 3.196 Å 7.052 Å
1RH6-A 4.190 Å 9.645 Å 4.242 Å 10.156 Å
1Z0J-B 5.609 Å 10.166 Å 6.232 Å 11.438 Å
2DS5-A 3.588 Å 8.679 Å 3.425 Å 7.639 Å
2EQ7-C 3.427 Å 7.247 Å 4.177 Å 8.401 Å
2HBA-A 3.832 Å 8.848 Å 4.194 Å 9.075 Å

Table 2. Resulting energies and a structural comparison of the folding results.

The g(Cfit) structures represent our “true” model to benchmark the following folding
scheme. The energies of Cfit and g(Cfit) and their structural differences to each other and
to CPDB are given in Table 1.

The folding simulation procedure applied follows the idea of [29]. For each amino acid
sequence S, we derive an according HP-sequence SHP using the translation table used
in [29]. The derived SHP are given in Table 1. Following the observation of the hydropho-
bic collapse [1], we calculated HP-optimal structure representatives utilizing the CPSP-
approach [3,22,20] and its latest extension HPREP [18]. The resulting HP-optimal structures
are namedCHP . For eachCHP we run gradient walks and evaluated the resulting local min-
ima found. The corresponding energies are listed in Table 2. Furthermore, we performed a
structural comparison of the resulting g(CHP ) structures to our “true” models g(Cfit) from
the fitting. The RMSD values are given in Table 2.

In addition, we executed for each CHP random descending walks in order to sample
the local minima of the energy landscape accessible from the collapsed starting structures.
Here, at each step a random neighbor with lower energy is selected following a uniform
distribution until no such neighbor exists. The lowest reached local minimum of all random
descending walks starting at C is denoted by r(C). Energy and structural differences are
given in Table 2.

5 Discussion

The gradient walks using 3-local moves starting from the fitted structures Cfit revealed
that the currently applied contact based energy function using the energy potentials e20,
originally derived for backbone-only models [4], does not reflect the real forces present for
models including side chains. This can be observed when comparing the energies E(Cfit)
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to E(g(Cfit)) (see Table 1). An energy function that results in a smaller difference would
be preferable, i.e. it would be a better model for the real forces guiding the folding process
to CPDB . In addition we could show, that the derived structures from our simple energy-
optimizing folding simulation procedure are still quite dissimilar to the energy-optimized
lattice fits of the real structures (see Table 2). We assume this mainly results from the simple
energy function as well.

To improve the results, we plan to apply more advanced energy functions, e.g. follow-
ing [13]. Most important: the energy function has to consider the backbone positioning as
well, which is not done by the contact-based energy functions from Sec. 2. Additionally, we
want to apply distance based energy potentials that allow for a more realistic energy evalu-
ation. Another direction of ongoing research is to further constrain the allowed structures.
Here, we will directly benefit from the CP-based formulation of k-local moves. Since we
are formulating a CSP on valid structural neighbors, it is quite easy to post additional struc-
tural constraints. For instance, we can enforce a restriction on the allowed relative torsion
angles along the protein chain (as e.g. done in [24]), that follows the observation of a limited
degree of freedom in nature.

6 Conclusions and Summary

We introduced a CP-based approach to enumerate k-local neighbors of a lattice protein
structure in backbone-only and side chain lattice protein models. The generic approach can
be applied for any local move length k within arbitrary lattices. Thus, it enables a fast
prototyping of new folding simulation schemes or can be easily extended with additional
constraints, e.g. restricted torsion angles. The CSP formulation enables the enumeration of
the whole k-local move neighborhood Nk(C) of a given structure C or the calculation of a
random neighboring structure Cr ∈ Nk(C) when applying a randomized search as possible
in Gecode [11]. The application of symmetry breaking search [2] can be used to avoid the
enumeration of symmetric structures, increasing the efficiency of folding simulations [10].
We plan the incorporation of the k-local move neighbor enumeration into our C++ energy
landscape library (ELL) [21]. This will open an easy interface for folding simulations in
arbitrary lattices utilizing any energy function of interest. Furthermore, this will enable full
kinetics studies based on the energy landscape topology.

We will utilize the flexibility of the CP-based approach to incorporate additional struc-
tural constraints into the neighborhood generation. Following [24,23], it is beneficial to
restrict torsion angles along the backbone or to exploit secondary structure information.

Another advantage of the CP-based approach is its extensibility to constraint optimiza-
tion problems (COP). Currently, we plan to incorporate the energy function as the objective
into the CSP, as e.g. done in [6,9]. Thus, by solving a COP while optimizing the energy
function, we can directly calculate the lowest energy neighbor of a structure following the
framework of Pesant and Gendreau [26], which is needed e.g. for a gradient walk in the
energy landscape as done in Sec. 4. Furthermore, this would enable an extension of the
work of Zhang et al. [31]. They showed (for backbone-only models) that the performance
of Monte Carlo folding simulations can be significantly increased using a greedy sequential
regrowth of subchains. Thus, we plan to directly apply the sketched COP to calculate the
optimal fragments for lattice proteins including side chains. Finally, the presented CP-based
move set formulation can be easily extended to any other local move definition of interest.
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ing simulation by two-stage optimization. In Proc. of ISICA’09, CCIS, Wuhan, China, Oct 2009.
Springer. (accepted).

30. G. Wang and Roland L. Dunbrack. Pisces: a protein sequence culling server. Bioinformatics,
19(12):1589–91, 2003.

31. J. Zhang, S. C. Kou, and J. S. Liu. Biopolymer structure simulation and optimization via fragment
regrowth Monte Carlo. J Chem Phys, 126(22):225101, 2007.

59



Author Index

David Allouche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Rolf Backofen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43,51
Luca Bortolussi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Henning Christiansen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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