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Preface

Bioinformatics is a challenging and fast growing area of research, which is of
utmost importance for our understanding of life. Major contributions to this
discipline can have thousands of positive effects in medicine, agriculture, or
industry. To pick out only a few examples, Bioinformatics tackles problems
related to:

• Recognition, analysis, and organization of DNA sequences

• Biological systems simulations (for metabolic or regulatory networks)

• Prediction of the spatial conformation of a biological polymer, given its
sequence of monomers (in particular for proteins and RNA)

All these problems can be naturally formalized using constraints over finite
domains or intervals of reals. Biology is a source of extremely interesting and
challenging problems that can be encoded exploiting the application of recent
and more general techniques of constraint programming. In this framework,
some problems that have been successfully tackled are:

• The fundamental bioinformatics problem of sequence alignment can be
solved by recent inference based constraint methods

• Biological systems simulations can be easily designed using concurrent
constraint programming, and

• The constrained-based prediction of protein conformations promoted the
development of new search strategies, new constraint solvers, and general
symmetry breaking.

The main aim of this workshop is twofold. On the one hand, to share recent
results in this area (new constraint solvers, new prediction and simulation pro-
grams). On the other hand, to present new challenging problems formalized
and/or solved with constraint based methods.

Rolf Backofen
Alessandro Dal Palù

Sebastian Will
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Abstract. We present a method to simulate biochemical networks de-
scribed by the graphical notation of Molecular Interaction Maps within
stochastic Concurrent Constraint Programming. Such maps are compact,
as they represent implicitly a wide set of reactions, and therefore not easy
to simulate with standard tools. The encoding we propose is capable to
stochastically simulate these maps implicitly, without generating the full
list of reactions.

1 Introduction

The aim of this work is the simulation of biological regulatory networks described
by the graphical notation of Molecular Interaction Maps (MIM) [11]. In order to
achieve this goal, we define an encoding of such maps in stochastic Concurrent
Constraint Programming (sCCP) [1], a stochastic, concurrent, and constraint-
based programming language.

In scientific literature, many mathematical tools have been proposed to de-
scribe, model, and simulate the behaviors of biological systems, all sharing the
common goal of organizing and analyzing the available knowledge and under-
standing of such systems [9]. As happens with computer programming languages,
one formalism could be better suited than another for a specific purpose, depend-
ing on the features it provides to its users. When choosing a formalism many
parameters must be taken into account: continuous or discrete representation
of the entities, expressivity, availability of mathematical analysis techniques,
possibility of a computer aided simulation and visualization, and so on. Other
important properties of a modeling language concern the process of writing and
maintaining a model: compositional languages are usually preferable for systems
composed of many interacting parts, like biological ones [12]. Formalisms can
also differ in the size of produced models; generally, the more compact the bet-
ter. Moreover, the same system can be modeled at different levels of detail; for
example, a cell can be described as a functional black box or specifying its in-
ternal behaviors and mechanisms in detail.
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As the focus of modeling in biology is to understand dynamical properties of
biological systems, most of the modeling languages have a semantic based on
ordinary differential equations [15] or stochastic processes [16]. Stochastic pro-
cesses, usually continuous-time Markov Chains [16], have been used in biochem-
istry and biology since a long time, especially after the publishing of a simple
and efficient simulation algorithm by Gillespie [8]. These models are generally
more realistic than the ones based on Ordinary Differential Equations (ODEs),
as they represent molecules as discrete quantities (compared to the continuous
approximation of ODEs) and, moreover, they have a noisy evolution (compared
to the determinism of ODEs), an important issue in biology [16].

Generally, both stochastic and differential models can be obtained in a canon-
ical way when the list of reactions of the system is fully specified [16] (i.e., we
need to specify all the possible ways of reacting of all the possible reactants).
A big problem with this approach is the cost of the notation: in some cases,
the effort required for a complete specification can be overwhelming; this is true
especially for bio-regulatory networks, due to the central role played by multi-
molecular complexes and protein modifications [10, 11, 6]. In fact, even a small
set of proteins can potentially generate a big number of different complexes, of
which only a few different kinds may be present at a certain time. Manually
listing all these complexes can be a very hard task.

In order to tackle this problem, we need a formalism that can work at an
higher level of abstraction, representing entities and behaviors in an implicit
way. One possibility is offered by the Molecular Interaction Maps [11]: they
are a compact graphical notation proposed by Kohn, with the goal to be clear,
easy to use, compact, unambiguous, and (hopefully) widespread. In the author’s
expectations, the equivalent of electronic circuit diagrams for biologists.

The contribution of this work is the definition of an encoding of MIM in sCCP,
a stochastic extension of Concurrent Constraint Programming [1], already used
to model biological systems at different degrees of complexity [3, 2]. The crucial
ingredient of such an encoding will be the implicit representation of complexes
and reactions. Essentially, molecular complexes will be represented by graphs,
modified locally by reactions. This work is related to κ-calculus [5], a ruled based
language describing complexation implicitly, and to β-binders [4], an extension
of π-calculus where π-processes are encapsulated in boxes that can be complexed
together. Before presenting the encoding, however, we need to discuss in more
detail Molecular Interaction Maps (Section 2). Then, after briefly recalling sCCP
(Section 3), we present the main ideas of the implicit simulation of MIMs in sCCP
(Section 4). Finally, conclusions and future works can be found in Section 5.

2 Molecular Interaction Maps

We briefly introduce now the MIM notation; the interested reader is referred
to [11] for a detailed presentation. A MIM is essentially a graph, where nodes
correspond to different (basic) molecular species, linked by different kinds of
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(a) (b)

Fig. 1. Two very simple MIMs

connecting lines, see Figure 1 for an example. The notation follows few general
principles: to keep the diagram compact an elementary molecular species, like
A, B or C in Figure 1(a), generally occurs in only one place on a map. Different
interactions between molecular species, instead, are distinguished by different
lines and arrowheads; for instance, the double line in Figure 1(a) represents a
covalent modification of B (in this case a phosphorylation, i.e. the attachment of a
phosphate group in a specific place in the protein), while the single double-barbed
arrows denote complexation operations. Complex molecular species, or simply
complexes, are created as a consequence of interactions and are indicated by
small circles on the corresponding interaction line; e.g. in Figure 1(a) x represents
the complex A : B, the result of a complexation between A and B, while y
represents the phosphorylated B molecule (denoted hereafter with pB).5

In general, there are two types of interaction lines: reactions and contingen-
cies. The former operate on molecular species, the latter on reactions or other
contingencies. The line with a T-shaped end of Figure 1(b) is an inhibition line;
it states that phosphorylated B (indicated by y) cannot bind to C, (in fact the
line terminates on the barbed arrow connecting B to C). Another contingency
symbol of Figure 1(b) is the arrow with a bar preceding its empty arrowhead,
terminating in x. This line represents requirement : B must be phosphorylated
in order to bind to A. Note that multiple nodes on an interaction line represent
exactly the same molecular species.

In order to explain the differences between Figure 1(a) and Figure 1(b), we
need to introduce the interpretations of MIMs. The MIM notation, in fact, can
be equipped with two different interpretations: explicit and combinatorial.
In the explicit interpretation, an interaction line applies only to the molecular
species directly connected to it. Looking again at Figure 1(a), we can say that
B can bind to A (forming the complex A : B) or to C (forming the complex
B : C) but there is no way the complex A : B : C will be formed. Moreover if B
is phosphorylated, it cannot bind neither to A nor to C.
In the combinatorial interpretation, an interaction line represents a functional
connection between domains or sites that (unless otherwise indicated) is inde-

5 MIMs have also special symbols for gene transcription and regulation and for com-
partments and transportation; hence they can, in principle, be used to represent
large scale networks integrating, for instance, biochemical, transportation and ge-
netic networks.
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pendent of the modifications or bindings of the directly interacting species. In
this way the map of Figure 1(a) states that A can bind to B, independently of
the state of B. For instance, B could be phosphorylated and thus forming the
A : pB complex, or it could be bound to C, resulting in the A : B : C complex.
Moreover, the combinatorial interpretation represents implicitly a large number
of molecules: a single complexation arrow usually handles, on both sides, a big
set of reactants. Consider, for example, the arrow connecting A to B in Fig-
ure 1(a); in the combinatorial interpretation it represents four reactions, namely
the complexation of A with B, pB, B : C and pB : C.6

In principle, it is always possible to create an explicit MIM with the same
behaviors of a combinatorial MIM, introducing more reaction arrows and con-
tingencies.7 Explicit MIMs can be easily translated into a set of ODEs or into
an explicit stochastic model for computer simulation, see [10]. Unfortunately,
expliciting a combinatorial MIM is a non-trivial job, due to the combinatorial
explosion of reaction arrows and contingencies needed in the map (expliciting
map of Figure 1(a) requires nine more arrows). In addition, an explicit ODE-
based (or stochastic) simulation, like the one described in [10], requires to con-
sider all possible molecular complexes that can be generated in the system as
reactants or products of some reaction. However, at a given time, usually only a
small subset of these complexes is present, hence the effort needed to generate
explicitly this large number of complexes is largely unmotivated.

Our goal is precisely to define a simulation operating directly at the level of
the combinatorial interpretation of MIMs, hence this is the interpretation we will
consider in the rest of the paper. The advantages of this choice are clear: during
each stage of a simulation, we need to represent only the complexes present in
the system at that time. Moreover, models can be defined using the compact
notation of combinatorial MIMs, hence the resulting map is usually smaller,
thereby easier to build and understand.

The biggest obstacle towards an implicit simulation of MIMs is the fact that
its interpretations are ambiguous. We tackled this problem defining a set of
graph rewriting rules that disambiguate the maps, in what we deem a biologically
plausible way. We omit here further details on this preprocessing step.

3 Stochastic Concurrent Constraint Programming

Concurrent Constraint Programming (CCP [13]) is a process algebra having
two distinct entities: agents and constraints. Constraints are interpreted first-
6 The combinatorial interpretation considers these reactions as happening uniformly,

i.e. with the same rate whatever the context. This may not be true biologically:
for instance, A may complexate faster with pB than with B. This behavior needs
to be specified explicitly using specific contingency arrows, like stimulation arrows.
A different approach worth considering may be that of assigning basic rates as a
function of the presence/absence of certain bounds in the complex.

7 Contingencies are used in the combinatorial interpretation to restrict behaviors. For
instance, in the map of Figure 1(b), the explicit and the combinatorial interpretations
coincide.
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order logical formulae, stating relationships among variables (e.g. X = 10 or
X + Y < 7). Agents in CCP, instead, have the capability of adding constraints
(tell) into a “container” (the constraint store) and checking if certain relations
are entailed by the current configuration of the constraint store (ask). The com-
munication mechanism among agents is therefore asynchronous, as information
is exchanged through global variables. In addition to ask and tell, the language
has all the basic constructs of process algebras: non-deterministic choice, paral-
lel composition, procedure call, plus the declaration of local variables. Moreover,
constraints of the store can be defined using the computational machinery of
Prolog [14, 13].

The stochastic version of CCP (sCCP [1, 3]) is obtained by adding a stochastic
duration to all instructions interacting with the constraint store C, i.e. ask, tell.
Each instruction has an associated random variable, exponentially distributed
with rate given by a function associating a real number to each configuration of
the constraint store: λ : C → R+.

The underlying semantic model of the language (defined via structural oper-
ational semantic, cf. [1]) is a Continuous Time Markov Chain [16] (CTMC), i.e.
a stochastic process whose temporal evolution is a sequence of discrete jumps
among states in continuous time. States of the CTMC correspond to configu-
rations of the sCCP-system, consisting in the current set of processes and in
the current configuration of the constraint store. The next state is determined
by a stochastic race among all active instructions such that the fastest one is
executed. More details on sCCP and on its operational semantics can be found
in [2].

Time-varying quantities, an important ingredient to deal with biological sys-
tems [3], are modeled as stream variables, i.e. growing lists with an unbounded
tail.

In [2, 3] we argued that sCCP can be conveniently used for modeling a wide
range of biological systems, like biochemical reactions, genetic regulatory net-
works, the formation of protein complexes, and the process of folding of a protein.
In fact, while maintaining the compositionality of process algebras, the presence
of a customizable constraint store and of variable rates gives a great flexibility
to the modeler.

4 Encoding MIMs in sCCP

The starting point for the direct simulation of MIM in sCCP is the definition
of a suitable representation of molecules and complexes. Actually, with respect
to other process algebras like π-calculus, sCCP offers a crucial ingredient in
this direction, namely the presence of the constraint store. In fact, the store
is customizable and every kind of information can be represented by the use
of suitable constraints, i.e. logical predicates. Manipulating and reasoning on
such information can be performed in a logic programming style [13]. These
ingredients make the constraint store an extremely flexible tool that can be
naturally used to represent the data structures needed to operate on MIMs.
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molecular type(molecular type id,port list,contingency list)
node(molecular type id, mol id)

edge([mol id1, port type id1],[mol id2, port type id2])
complex type(complex type id, node list,edge list, contingency list)

complex number(complex type id, X)
port number(port type id, X)

Table 1. Predicates describing MIM structures and counting their occurrences.

The idea to simulate MIMs is simple: we operate directly on the graphical
representation. Of course, a MIM contains all possible interactions of the system,
hence the graphical representation used in the simulation must be specialized to
single molecules and complexes. Complexes, in particular, can be seen as graphs,
with nodes representing the basic molecules (i.e. the proteins) of the complex,
and with edges representing the chemical bonds tying them together. Such graphs
will be referred in the following as complex-graphs.

Recalling Figure 1 and the combinatorial interpretation of Section 2, we can
easily convince ourselves that molecular species are defined by the collection
of their interaction sites. In our encoding, these sites are represented by ports
(or better, port-type), i.e. terminating points of one single arrow in the MIM.
Port-types are characterized by an unique identifier, called port type id, and by
a boolean variable, INHp, storing the state of the port. In fact, each port can
be active (INHp = false), meaning that it can take part to the corresponding
reaction, or inhibited (INHp = true) by biological mechanisms specified in the
map.
Molecular-types correspond to nodes of the MIM or to points in the middle
of an arrow (i.e., terminating points of reaction arrows). They consist of an
unique identifier, molecular type id, of a list of port-types, implicitly determining
all the possible reactions the molecule can be involved into, and of a list of
contingencies starting from it (we present the treatment of contingencies at the
end of the section). For instance, in Figure 1(a), A and x nodes define two
distinct molecular-types.

Each graph of a complex can contain, in principle, several instances of the
same molecular-type, just think at the case in which two copies of the same
molecule are bound together (the so-called homodimers). These different copies
are distinguished by an unambiguous naming system inside each complex: each
node of a complex-graph is numbered by an integer, local to that complex,
called mol id. Moreover, each different complex graph that can be constructed
according to the prescription of the MIM, identifies a complex-type; complex-
types are also given an unique id, complex type id, assigned at run-time whenever
a new complex-type is created.
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Complex-graphs and molecular-types can be easily represented in sCCP. In
fact, we just need to store all the characterizing information in suitable logical
predicates, listed at the beginning of Table 1.
Another important class of predicates, crucial for the run-time engine, are those
counting the number of objects of a certain type. Specifically, at run-time we
need to count how many complexes we have for each different complex-type
(predicate complex number), and how many active ports we have, for any port-
type (predicate port number). The variable X used in these predicates is a
stream variable, defined in Section 3.

The reason for updating the number of ports or complexes at run-time, lies
in the definition of the stochastic model for the simulation of MIMs. We adopt
a classical approach, defining the speed of a reaction according to the principle
of mass action [8]: the speed of each reaction is proportional to the quantity
of each reactant. In our encoding, each reaction involves one or two port-types,
hence its speed will be proportional to the number of active instances of such
port-types.

The sCCP program associated to a MIM can be seen as a loop composed of
4 basic steps:

1. choose the next reaction to execute;
2. choose the reactants;
3. create the products;
4. apply contingency rules to products.

It gives rise to a stochastic model (a Continuous Time Markov Chain) that
can be simulated by a classical Monte Carlo algorithm like Gillespie’s direct
method [8] (see [2] for details on a meta-interpreter for sCCP).
We give now some details on the sCCP program. The choice of the next reaction
can be seen as a stochastic race among all the enabled reactions. In sCCP, this
effect is obtained associating an agent to each reaction arrow of the molecular
interaction map, called reaction agent. This agent tries to execute at a rate de-
fined according to the principle of mass action. If the agent wins the competition,
it needs to identify the actual reactants. In fact, a reaction involves one or two
complexes with available ports of the required port-type. However, as different
complex-types can have such ports available, we must identify the ones really
involved in the reaction. Essentially, we need to pick, with uniform probability,
one complex among all those having an active port of the required type. This
operation is performed by port managers: there is one agent for each port-type,
keeping an updated list of all complex types containing active ports of its type
and choosing one of them upon request from a reaction agent.

When reactants have been chosen by port agents, the reaction agent generates
the products of the reaction. For instance, in case of a complexation reaction,
the agent has to merge two complexes into one, adding nodes and edges to the
complex description and marking as bound the ports involved in the reaction
(i.e. removing them from lists of the corresponding port agents).
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If, after these operations, a new (i.e. not present in the system) complex-type
is obtained, then all the necessary predicates are added to the constraint store. A
bookkeeping of the predicates counting complexes and ports is then performed.

The last point of the simulation algorithm consists in the application of con-
tingencies. These are the inhibition and requirement arrows, briefly introduced
in Section 2. To grasp the rationale behind their implementation, consider again
Figure 1(b). The inhibition arrow from y (the head of the contingency rule) to
A-B complexation line (the tail) was used to forbid complexation between phos-
phorylated B and A. This essentially means that, if B is phosphorylated (i.e.,
the corresponding edge e is in the complex description), then B cannot bind to
A, and so the port pB−A connecting B to A, must become inactive.
This example suggests that contingencies are nothing but logical implications of
the form:

IF (a set of edges E is in the complex)
THEN (some ports must become active/inactive)

Rules of this kind are stored in each molecular-type descriptor, so that each
complex-type has associated a set of contingency rules potentially applicable.
When a new complex type is created in a reaction, then the reaction agent checks
what rules among those listed in the complex can be applied, and it modifies
accordingly the value of INHp of ports and their associated global counters, like
the predicate port number and the lists used by port agents.

5 Conclusions

In this paper we presented an implementation in stochastic concurrent constraint
programming of an algorithm to simulate biological regulatory networks defined
by means of Molecular Interaction Maps. This notation is implicit, as each edge
in such a diagram represents a set of reactions potentially very large. Our sCCP-
simulation, instead of generating the full list of reactions, is able to simulate the
map implicitly, generating only those complexes that are actually present in
the system at run-time. This is achieved using a graph-based representation
of complexes, so that new complexes are dynamically constructed merging and
splitting other complex-graphs. A prototype implementation has been written
in SICStus prolog [7] and used to perform some preliminary tests.

The choice of sCCP as a language to describe (implicitly) such maps is mo-
tivated by different reasons. First of all, the details of the stochastic evolution
are dealt automatically by its (stochastic) semantics. In addition, the power of
constraints allows to represent and reason directly on the graph-based repre-
sentation of complexes, separating this description from the definition of agents
performing the simulation. Another important motivation is that the model built
in such way is compositional w.r.t. the addition of new edges (and nodes) in a
MIM. Finally, the size of an sCCP program associated to a MIM scales linearly
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with the description of the map (i.e. with the number of symbols needed in the
description), thus taming the combinatorial explosion of possible reactions.

Currently, we are planning to realize a more efficient implementation, in-
terfacing it with graphical tools to design MIMs, in order to analyze big bio-
regulatory networks.

Acknowledgements

This work has been supported by project FIRB03-RBNE03B8KK.

References

1. L. Bortolussi. Stochastic concurrent constraint programming. In Proceedings of
4th International Workshop on Quantitative Aspects of Programming Languages,
QAPL 2006, ENTCS, volume 164, pages 65–80, 2006.

2. L. Bortolussi. Constraint-based approaches to stochastic dynamics of biological sys-
tems. PhD thesis, PhD in Computer Science, University of Udine, 2007. Available
at http://www.dmi.units.it/ bortolu/files/reps/Bortolussi-PhDThesis.pdf.

3. L. Bortolussi and A. Policriti. Modeling biological systems in concurrent constraint
programming. In Proceedings of Second International Workshop on Constraint-
based Methods in Bioinformatics, WCB 2006, 2006.

4. F. Ciocchetta, C. Priami, and P. Quaglia. Modeling kohn interaction maps with
beta-binders: an example. Transactions on computational systems biology, LNBI
3737:33–48, 2005.

5. V. Danos and C. Laneve. Formal molecular biology. Theor. Comput. Sci.,
325(1):69–110, 2004.

6. J.R. Faeder, M.L. Blinov, B. Goldstein, and W.S. Hlavacek. Rule-based modeling
of biochemical networks. Complexity, 10:22–41, 2005.

7. Swedish Institute for Computer Science. Sicstus prolog home page.
8. D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. of

Physical Chemistry, 81(25), 1977.
9. H. Kitano. Computational systems biology. Nature, 420:206–210, 2002.

10. K. W. Kohn. Functional capabilities of molecular network components controlling
the mammalian g1/s cell cycle phase transition. Oncogene, 16:1065–1075, 1998.

11. K. W. Kohn, M. I. Aladjem, J. N. Weinstein, and Y. Pommier. Molecular in-
teraction maps of bioregulatory networks: A general rubric for systems biology.
Molecular Biology of the Cell, 17(1):1–13, 2006.

12. C. Priami and P. Quaglia. Modelling the dynamics of biosystems. Briefings in
Bioinformatics, 5(3):259–269, 2004.

13. V. A. Saraswat. Concurrent Constraint Programming. MIT press, 1993.
14. L. Shapiro and E. Y. Sterling. The Art of PROLOG: Advanced Programming

Techniques. The MIT Press, 1994.
15. S. H. Strogatz. Non-Linear Dynamics and Chaos, with Applications to Physics,

Biology, Chemistry and Engeneering. Perseus books, 1994.
16. D. J. Wilkinson. Stochastic Modelling for Systems Biology. Chapman & Hall, 2006.



10

The Density Constraint
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Abstract. The paper expands on the growing body of literature which makes
use of constraint programming techniques to solve bioinformatics problems, es-
pecially in the context of discrete models. The focus is on the use of constraint
programming methodologies to solve the problem of prediction of real-size pro-
tein structures. In particular, the paper builds on the goodresults obtained using
simplified energy models (e.g.,HP [1]) and bioinformatics-specific global con-
straints [3]. The paper shows how information obtained throughelectron cryomi-
croscopycan help this research. The density maps obtained from cryomicroscopy
are formalized asglobal constraintsand used to further prune the space of pos-
sible configurations of amino acids in the 3D space. The paperinvestigates the
complexity of these new global constraints, and presents a preliminary imple-
mentation of the associated propagation procedures.

1 Introduction

Electron cryomicroscopyis an experimental technique that is believed to have the poten-
tial to allow structure determination for large and membrane proteins [11, 7, 2]. Using
cutting edge techniques in this field, the 3D structure of large complexes, such as the
Herpes virus, have been successfully generated at a8.5Å resolution [11]. Although it
is not possible to determine the backbone chain of the protein at a resolution lower
than6Å–current methods to determine the protein structure require a much higher res-
olution, such as3Å or 4Å [10, 5]—this resolution allows the identification of various
secondary structure elements, such asα-helices andβ-sheets [11].

In general, an electron microscope produces 2D scans of a sample, which corre-
spond to a projection of a 3D object electron density on one ofthe viewing planes. This
technique can be employed to study the structure of proteinsin a potentially faster—
since no protein crystal growing is required—and cheaper way—since the microscope
and the technique used are less expensive than a NMR apparatus. The basic idea is to re-
trieve several 2D scans of a high concentration protein solution, in which many copies
of the same molecule are freely oriented in the fluid. Each scanned protein reveals a
projection of its electron density on a randomly oriented plane. The combination of the
information carried by individual projections allows us toobtain a 3D model of density.

The main drawbacks of this method are represented by the resolution, which in
general is lower than NMR, and the noise gathered by the microscope, which is usually
reduced by working at low temperatures. Thus, it is a significant challenge to exploit
this low resolution data in order to predict high resolutionmodels (i.e., all atoms) of
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the protein. Nevertheless, even at low resolution, many of the features of the protein are
recognizable, and information about the general shape is available.

In this paper we introduce a constraint framework that models the density infor-
mation as a global constraint to be integrated in constraint-based protein structure de-
termination tools (e.g., like COLA [4]). We analyze the computational complexity of
(some variants of) the proposed global constraint, and we describe some preliminary
implementation results.

2 Density maps

A density mapD is a data set obtained through electron cryomicroscopy analysis. It
represents the electron density of molecule in a given portion of space and usually it
has a resolution ranging from6Å to 12Å. This means that two density contributions can
be distinguished only if they are at distance greater than6Å (resp.12Å). The density
map is sampled at uniform rateR in the 3D space. This generates a partition of the space
into cubes with edges of lengthR. Each cube contains a certain amount of density that
is associated to a real number, which represents the sample measurement.

In principle it is sufficient to sample the density map at the Nyquist frequency [8]
to avoid information loss—i.e., the sampling rate should beless than or equal to half
of the resolution—from3Å to 6Å in our case. However, it is preferable to intensify the
sampling rate (i.e., reduceR). A common choice is to sample at1Å. Because of this, the
density map results to be smooth, due to the over-sampling process. This is analogous to
a low resolution photo printed and over-sampled and/or scanned by a higher resolution
scanner.

The density information is a 3D function which is generated by the presence of
molecule’s components (e.g., atoms, nucleotides, amino acids). Each component pro-
vides a typical contribution function, which combines additively to form the molecule
density map. We will consider the density map overlapped on adiscrete version of the
3D space. Formally, we will use the notationD(x, y, z) ≥ 0 to refer to the value of the
density function sampled at location(x, y, z) ∈ N

3.
In Figure 1, on the right, we show a simple density map of a protein with4 identical

amino acids, arranged on the xy plane. We plot only the maximal z layer. The map
is simulated with a resolution of10Å and sampled at1Å. The darker colors indicate
higher densities. The white circles highlight the positionof the center of the individual
amino acids. In the same figure, on the left, we show the contribution of a single amino
acid.

When using low resolution density maps, each component of a molecule can be
approximated by a specific contribution functionF : N

3 × N
3 → R

+ ∪ {0}. For
example, a reasonable choice could be to use aGaussiancontribution:

F(x, p) = Ga,σ(x, p) = ae−
|x−p|2

2σ2

wherep ∈ N
3, a ∈ R

+, σ ∈ R
+ are respectively the reference point for the center of the

object, the intensity of the map, and the decay control parameter. The parametersa and
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Fig. 1.Density map of an amino acid (left) and of a4-amino acid protein (right)

σ can be estimated according to the type of the component, by first generating density
maps for the single components and then performing a least square approximation.

Let us observe that the Gaussian is only one of the possible forms for the contribu-
tion functions. Our approach intended to be parametric w.r.t. the function used.

Given a molecule chemical description—i.e., the set of components and their chem-
ical bonds—and an observed density mapD, it is possible to decompose the molecule
into n components (e.g., a protein can be decomposed into the set ofcomposing amino
acids, or, with higher precision, into the set of atoms composing it). Each component
i ∈ 1 . . . n can be placed in the space in the positionpi and provides a specific contri-
bution functionFi(x, pi) which can be pre-computed.

The ultimate goal is to find the possible placements of the components[p1, . . . , pn]
so that their combination produces a density map close toD.

More formally, for eachx ∈ N
3

n
∑

i=1

Fi(x, pi) ≈ D(x)

where≈means that we could introduce some tolerance in the equality, due to the errors
contained in the experimental data and introduced by approximations ofF functions.

In Figure 1, for example, given the density map and the approximation of the single
amino acid, we would retrieve the four placements (white circles) of the amino acids
in the original protein. Darker squares mean higher contributions (white circles only
specify the placement of components).

In order to produce the density map, the chemical formula of the molecule has to be
known. From the chemical formula, it is possible to derive exactly the electron charge
of the molecule, and thus the expected amount of density in the map. This information
provides the reference to the experimental data and allows us to relate correctly the
single contributions to the density map.
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3 Average and punctual density constraint

In this section we formalize the constraint induced by the knowledge of a density map
associated to a molecule.

We propose two global constraints. Both of them relies on theidea of discretization
of the space into regions (e.g., cubes with edges of lengthd ∈ N). In the first one, called
average density constraint, regionsof space are “big” i.e., capable of containing more
than one component. In this case, we consider the average density in the region. The
second constraint, calledpunctual density constraint, considers instead “small” (point-
wise) regions. The center of a component is placed exactly ona discrete point in the
space, and it also affects the neighboring points.

We assume that each variableX represents the position of a component in the space.
The domain ofX is thus a set of points inN3 and possibly organized according to a
crystal lattice disposition [4].

Definition 1 (Average Density Constraint). Let us consider the following compo-
nents:

– k disjoint regionsi = 1, . . . , k, each described by:
• the set of pointsRi ⊆ N

3 of the region, and
• a (density) valuesi ∈ R

+ ∪ {0}
Let us denoteR = (R1, . . . , Rk) ands = (s1, . . . , sk).

– n molecules1, . . . , n, each of them characterized by the corresponding contribu-
tion functionFi, whereF = (F1, . . . ,Fn),

– n variablesX = (X1, . . . , Xn) with domainsO1, . . . , On.

The global constraint
a density(X,F , R, s)

is satisfied by all then-tuples〈p1, . . . , pn〉 ∈ O1×· · ·×On such that for alli = 1, . . . , k

it holds that:

n
∑

j=1

∑

x∈Ri

Fi(x, pj) ≤ si (1)

The constraint states that each regioni provides an upper boundsi to the sum of
the density contributions provided by all the molecules in that area. The values ofsi for
the various regions can be obtained by the sum of the density valuesD(x, y, z) for all
the points(x, y, z) in the regionRi. Since region sizes are known, we have decided to
avoid to divide the sum of the contributions by the volume, thus keeping the average
value implicit.

Definition 2 (Punctual Density Constraint). Let us consider adiscretedensity map
D(x, y, z) ∈ R

+ ∪ {0}, wherex, y, z ∈ N. Givenn molecules1, . . . , n, each of them
characterized by the corresponding contribution functionFi, whereF = (F1, . . . ,Fn),
n variablesX = (X1, . . . , Xn) with domainsO1, . . . , On. Then, the global constraint

p density(X,F , D)
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is satisfied by the set ofn-tuples〈p1, . . . , pn〉 ∈ O1×· · ·×On such that for allx ∈ N
3

it holds that:

n
∑

i=1

Fi(x, pi) ≤ D(x) (2)

Remark 1.In this paper we have chosen to require a≤ condition in (1) and in (2)
instead of a (possibly weak) form of equality≈. The idea is that, since the whole map
and the global amount of molecule contributions are known inadvance, when all the≤
constraints are satisfied, the equivalence is a consequence.

4 Complexity Results

We will study the complexity of the consistency problem for slightly simplified versions
of the density constraints. For the sake of simplicity, our analysis is performed in the
2D space.

Definition 3 (Density 1).Let us consider theDensity 1 problem defined as follows:
Input:

– k disjoint regions1, . . . , k, each of one characterized by:
• the set of pointsRi of the regioni,
• a (density) valuesi ∈ R

+ ∪ {0}

– n molecules providing density contributionsa1, . . . , an ∈ N.

Question: Establish whether there is an assignmentσ : {X1, . . . , Xn} −→ N
2 such

that for all i = 1, . . . , n:

σ(Xi) ∈

k
⋃

j=1

Rj (3)

∑

j=1...n,σ(Xj)∈Ri

aj ≤ si (4)

Let us definebox[(x1, y1), (x2, y2)] =
{

(x, y) ∈ N
2 : x1 ≤ x ≤ x2, y1 ≤ y ≤ y2

}

.

Proposition 1. TheDensity 1 problem is NP complete.

Proof. It is clearly in NP. To prove its NP completeness, let us reduce the bin packing
problem to theDensity 1 problem.1

Consider an instancea1, . . . , an, C, B of bin packing, where theai’s are the tokens,
C is the bin capacity, andB the number of bins. Letd ≥ 1 be an arbitrary integer
number. We can construct an instance ofDensity 1 as follows:

– k = B ands1 = · · · = sk = C

1 Observe that the bin packing problem is (strongly) NP-complete (see, e.g., [9, pp. 203–205]).
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– R1 = box[(0, 0), (d − 1, d − 1)], R2 = box[(d, 0), (2d − 1, d − 1)], . . . , Rk =
box[((k − 1)d, 0), (kd− 1, d− 1)]

– Then molecules provide density contributionsa1, . . . , an

– The contribution functions are as follows:

Fi(x, p) =

{

ai, if x = p

0 otherwise

It is easy to see that this instance of bin packing has a solution iff the corresponding
instance ofDensity 1 has. ⊓⊔

This result proves the NP-completeness both of the consistency problem for thea density
constraint and for thep density constraint (in the reduction the size ofRi does not mat-
ter, so we can setd = 1).

Remark 2.Observe that the previous proof has some shortcomings. First, the bin pack-
ing reduction assumes arbitrary density contributions forthe molecules. However, in a
real problem at hand, density contributions come from a specific finite set of values,
depending on the nature of the individual molecules. Second, in the case ofp density,
we allow more than one molecule in a single point, which is nota realistic assumption
in the density problem. Third, the density distribution function used in the proofs is very
simple. We are working on to a more general NP-completeness proof.

The following version of the density problem, in which the sets of molecule values
are known in advance (letα be its cardinality), and a maximum number of molecules
per region is fixed (bounded by a parameterβ), a polynomial consistency check.

Definition 4 (Density 2). Let α ∈ N and β ∈ N be fixed. Then theDensity 2
problem is defined as follows.
Input:

– k disjoint regions1, . . . , k, each described by:
• Ri be the set of points of the regioni
• a (density) valuesi ∈ R

+ ∪ {0}
– n molecules with density contributionsa1, . . . , an chosen from a set ofα different

elements and such thataiβ ≥ max{s1, . . . , sk}
– n variablesX1, . . . , Xn

Question: Establish whether there is a one-to-one assignmentσ : {X1, . . . , Xn} −→
N

2 such that for alli = 1, . . . , n formulas (3) and (4) hold.

Proposition 2. TheDensity 2 is in P.

Proof. By hypothesis, eachai is chosen in a set ofα elements, say{m1, . . . , mα}. The
set of molecules in a regionR can therefore be identified as a tuple〈t1, . . . , tα〉, where
ti represents the number of occurrences of molecules of valuemi in that region.

Let S = max{s1, . . . , sk}. By hypothesis, for allj = 1, . . . , n, ajβ ≥ S: thus for
all i = 1, . . . , α, miβ ≥ S. We know that for every regionR and every solutionσ it
holds that

α
∑

i=1

timi =
∑

j=1...n,σ(Xj)∈R

aj ≤ S
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Let m = min{m1, . . . , mα}. Assume, by contradiction, that
∑α

i=1 ti > β. Then,

α
∑

i=1

timi ≥

α
∑

i=1

tim > βm ≥ S

which is an absurdum. Therefore,
∑α

i=1 ti ≤ β (and, in particular,ti ≤ β).
Now, let us find an upper bound for the number of these tuples. Let us distribute

in a lineα white balls (from left to right, one for each elementmi) andβ black balls.
The number of black balls immediately on the right to thei-th white ball denotes the
number of occurrences of elementsmi in the region. For instance, ifα = 4 andβ = 3:

- • • • ◦ ◦ ◦ ◦ stands for〈0, 0, 0, 0〉
- ◦ • • ◦ • ◦ ◦ stands for〈2, 1, 0, 0〉
- • ◦ • ◦ • ◦ ◦ stands for〈1, 1, 0, 0〉
- • • ◦ ◦ ◦ ◦ • stands for〈0, 0, 0, 1〉

It is easy to see that there is a disposition for each possibletuple. Thus, the number of
possible tuples isq = (α+β)!

α!β! and any possible solution can be given (and tested) by
enumerating, for each value ofq, how many regions are in that way. An upper bound is
thereforekq = O(nq). ⊓⊔

Note, however, that in practice the exponentq is rather large. For instance, assuming
α = 20 (one characteristic value for each amino acid) andβ = 5 (at most5 amino acids
can be in a region), we obtainq = 637, 560, 000.

5 Preliminary results and Conclusions

We can include density constraints in the context of a CSP framework used to determine
the placement of amino acids inN3. Given a protein sequenceS ∈ {1, . . . , 20}n, its
density mapD and thej-th amino acids density map parametersaj and a Gaussian
functionGj , j ∈ {1, . . . , 20},2 we define the variablesXi with domainsDi ⊆ N

3, with
i ∈ {1, . . . , n}. The constraints added to the problem are:

– p density(X , a, G, D)
– contiguous(X) which imposes that each pair of consecutive amino acids are placed

at Euclidean distance equal to3.8Å.

The CSP defined above cannot provide any solutions for two reasons. The first one is
that, given the discrete domains of amino acids positions, it is not possible to find a
pair of points at exact distance equal to3.8Å. The distance constraintcontiguous has
to be in fact relaxed, in order to allow admissible solutions. In the implementation we
used the range3.3Å–5.2Å as acceptable distances. The second reason is more sub-
tle: given the approximations made to model theF functions as Gaussian distributions
and the discretized locations of contributions, it is impossible to recreate exactly the
original density mapD. This translates to the fact that the best solution (in whichthe

2 I.e., we have individual parametersa andσ for each one of the 20 distinct amino acids.



17

components are mapped as close as possible to the original positions) would provide
fluctuations w.r.t. the original density map. The slight local excess of density would im-
mediately falsify thep density constraint. It is convenient, thus, to increase the original
density map by adding a density threshold, obtained, e.g., as a fraction of a single amino
acid maximal punctual contribution.

The combination of the two constraints allows a filtering that can be performed as
follows. A domain pointp for amino acidSi has support only if the presence ofSi does
not violateD. Moreover there must be a compatible assignment ofSi−1 andSi+1 that
respects both thecontiguous and thep density constraints.

It is possible to further enhance the filtering, consideringthat for each supported
assignment ofSi, if there is a pointt such thatD(t) is greater than the sum of con-
tributions ofSi−1, Si andSi+1 in t, then it should be possible to add another generic
amino acid that contributes tot, in order to reduce the gap. This boils down to finding
a support for this amino acid.

To show the impact of the density constraint, we focus on simple toy examples in
the 2D plane. Here we generate two types of density maps, assuming that each amino
acid contributes with a Gaussian contribution function. Inthe first example, we arrange
a chain of 30 amino acids with a spiral shape, respecting the distance of 3.8̊A between
consecutive elements. This example shows that non-trivialarrangements can be recon-
structed, despite the fact that the domain of admissible positions is discrete. In Figure 2,
we show the input density map (on the left) and the computed density map (in the cen-
ter) generated by an admissible solution (on the right). Thedarker pixels represent the
denser regions. The side of a pixel is1Å and the simulated resolution is10Å.

As a second example, we show how a uniform density map (obtained by a square
tiling arrangement of16 amino acids on the plane) can be reconstructed. The density
maps and resulting configuration are shown in Figure 3.

The prototype, implemented on an AMD Opteron 2.2GHz Linux machine, has been
validated on a number of benchmarks. We report the first admissible arrangement found.
The results are summarized in Table 1. The Filtering column shows the time required
for the initial pruning of domains before the search is started. In the spiral example, the
filtering allows to reduce significantly the size of initial domains for central variables,
while for side amino acids the domain covers the whole spiral. The Domain size column
reports the size of the domains of the variable involved. Observe that after the filtering
only 16 points are allowed to central variables. The first andlast variables of the spiral,
instead, have 387 points allowed. The presence of small domains allows to exploit a
first fail strategy that is able to find a solution after few backtracks.

Fig. 2.Spiral with 30 amino acids: density (left), predicted density (center) and placement (right)
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Fig. 3.Square with 16 amino acids: density (left), predicted density (center) and placement (right)

Amino acids Filtering Domain size Search Nodes

Spiral 30 119.1 s 16–387 0.13 s 103

Square 16 23.8 s 214 95.6 s 124,663

Table 1.Summary of the experimental results

Observe how, in the square example, there are many equivalent solutions, roughly
bounded by the number of possible self avoiding walks insidethe square. The freedom
in placing the amino acids allows the search to exponentially grow, both in finding the
first admissible solution and in enumerating all of them.

We would like to stress that the space searched depends exponentially on the number
of neighbors, once an amino acid is fixed. In these examples there are 52 neighbors that
respect thecontiguous constraint (recall that we use a range of allowed distances).
The presence of thep density constraint allows us to deal with a52n search space
working with1Å accuracy. This is extremely desirable in order to obtain sound results.
In systems like COLA [4], the accuracy was set at3.8Å with only 12 neighbors per
point (due to the Face Centered Cubic lattice used).

In general, these examples suggest the possible application to real proteins. Often
real density maps contain uniform density areas (large cylinders and planes) that are
generated by the possible presence of secondary structure patterns, i.e.,α-helices and
β-sheets. From the complexity point of view, these areas allow a wide number of dis-
positions of subsequences, like in the case of the square example. These are sources
of exponentially many solutions, while other regions of proteins (coils) are more lin-
early shaped, like in the spiral example. The addition of further secondary structure
constraints could limit the explosion of equivalent solutions and retain only the biolog-
ically feasible ones.

An idea to improve the performances could be to use the density constraint disso-
ciated from thecontiguous constraint in the presence of secondary structure patterns.
In those cases, it is more important to obtain a placement of amino acids rather than
exploring all possible self-avoiding walks. Once a placement is found, then thecon-
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tiguous constraint will guide the correct linking between amino acids, following the
secondary structure properties. Dividing the phases allows a fast retrieval of a place-
ment compared to an expensive enumeration of self-avoidingwalks until an admissible
solution is found.
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Abstract. One of the main issues of computational biology consists in
the identification of short strings (motifs) that occur approximately in a
set of longer strings. A challenging problem is the one of extracting sets
of motifs (modules) that satisfy some constraints on the distance between
composing motifs and appear in a significant portion of the string input
data set. In this work, we encoded such a problem in CLP(FD) and we
tested our program on different data sets, obtaining significant results.

Introduction

After the first major effort in sequencing, the Human Genome Project, many
other genomes have been sequenced and the next big challenge is to build reliable
maps the functional elements. The essence of this challenge is finding specific
patterns in a vast amount of information, and it is therefore natural for the
fields of biology and information technology to cooperate in creating solutions
to meet it. The discovery/identification of short strings occurring approximately
in a set of longer strings/sequences is a classic in today’s computational biology.
In our particular case we refer to these short strings as motifs. The field of motif
discovery has seen, in recent years, a shift of attention from single motifs to sets
of motifs that cooperate in regulating the expression of a gene. This has resulted
in a new and more challenging objective. In biological terms, instead of finding
single Transcription Factor Binding Sites (TFBS, genomic motifs responsible for
the binding of Transcription Factors to Promoters and other regulative elements)
we now want to tackle the problem of finding (constrained) collections of TFBSs
modeled as composite motifs also known as modules.

In this paper we focus our attention on the problem of finding one or more
modules common to (a significant portion of) a given set of strings, imposing
and managing distance constraints on the collection of simple motifs generated
inspecting the input.

1 Biological Background

An important concept behind this work is gene regulation. Regulation is the
amount or timing of introduction of a functional product of a gene. The product
can be anything from mRNA to a protein or even a modified protein. In this
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text the term is used as a descriptor of the affinity to transcribe a given gene. An
up-regulated gene has higher likelihood of being transcribed and is transcribed
more often.

A Transcription Factor is a description of proteins that attach themselves to
binding sites in a gene’s promoter region and, thereby, regulate the transcription
of the gene. For this reason the discovery of such functional elements in the non-
coding regions of DNA can be very valuable. The regulation of a gene is much
more complex than this description might suggest. Orientation and folding of the
DNA are significant, among many other factors. Still the search and determina-
tion of transcription factor binding sites are two of the most important functional
elements in any genome, for understanding regulation. TFBSs are usually short,
around 5-15 base pairs (bp), and are frequently degenerate sequence motifs. As
a result of this, potential binding sites can occur frequently by chance in large
genomes of higher eukaryotes. This makes the functional elements even harder
to find.

Predicting promoter elements or extracting their consensus sequence are im-
portant steps towards the global comprehension of the mechanisms undergoing
genes co-regulation. In order to achieve this goal, it is necessary to take into
consideration aspects like the correct combination and the precise spatial orga-
nization of the regulatory sites, as demonstrated in recent papers [6, 11]. The
order and relative distances between the binding sites, thus, can no longer be
considered negligible constraints, and whatever the method used to extract a
consensus sequence is, the prediction of precise promoters structure cannot be
considered completed unless more biological knowledge is used during the pre-
diction [1, 5, 8, 9]. Transcription Factor (TF) molecules interact with each other
and bind to DNA to establish a gene transcription signal. The number of differ-
ent TFs in a module, the number of TFBS, the spatial constraints, the order of
TFBS and relative strands of TFBS differ for different regulatory pathways.

It is possible to extend the concept of motifs searching from the single binding
site approach to a broader, module-based approach, to identify groups of at most
3-4 different TFBS that are conserved in different co-regulated genes and that
maintain a constant overall distance with respect to one another. More complex
modules composed by several motifs are difficult to localize, as they might be
distributed in a large portions of the DNA.

It is important to underline that the module search/determination is a follow-
up of the motif search activity. As a matter of fact, the goodness of the obtained
results is tightly linked to the accuracy of the motifs discovery model used.

In literature, the issue of motif discovery has been well studied [10, 2].

2 Finding a common substring

Finding a consensus sequence representing the best approximation of all the
similar results that have been obtained by a search, is crucial in order to recover
useful information from the examined (biological) sequences. The problem can
be formulated as follows: find a substring or a “similar” subsequence that is
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common to many of the strings in the set. We use the Hamming distance dH to
define the concept of “similarity” among substrings, even though our results can
be easily adapted to a different notion of distance.

The problems we are interested in include the Closest String Problem (CStrP)
and the Closest Substring Problem (CSStrP), with or without a threshold.

Initially, guided by the needs of genomic research, statistical approaches were
used to give solutions for the CStrP. The problem had been previously studied
because of its connection with the area of coding theory, where it was proved to
be NP-hard [4]. The CSStrP models the more general situation where the strings
that must be compared do not have the same length, and one wants to find just
parts of the string that are similar. The CSStrP, being a generalization of the
CStrP, can be easily shown to be NP-hard. In terms of parameterized complexity,
the main results for the CSStrP is that it cannot be solved in polynomial time,
even when the distance parameter is fixed [3]. This is expressed, in terms of
parameterized complexity theory, by showing that the CSStrP is in the class
W[1]-hard.

As said before, it is important to underline that this task produces the input
for the module identification problem. As a matter of fact, the goodness of the
obtained results in the following is linked to the accuracy of the motifs discovery
model used.

The notion of module has been well formalized in [7] with the definition
of structured motif and the notion of module introduced below is a natural
adaptation to the case of discovery (as opposed to search).

The approach described in this paper is based on results obtained using the
algorithm ScanPro [13, 14, 15], which in turn was presented using a constraint
programming approach [12].

3 Finding sets of motifs

Let F = {s1, . . . , sα} be e a set of α strings, each one of length β or less,
over an alphabet Σ (i.e. nucleotides, aminoacids,. . . ). Let K = {1 . . . α} and
H = {1 . . . β}. Let MT ⊆ Σ? be a set of finite strings (motifs) such that each
µ ∈ MT is a substring that occurs in one or more strings of F . We define the
motif alphabet Γ to be a set isomorphic to MT .

Definition 1. Let M : Γ → P(K × H), the instance function, be such that
given a motif µ ∈ Γ , M(µ) = {(k1, h1), . . . , (kt, ht)} is a set of pairs of integer
numbers representing the indices of elements of F where µ occurs (even with
repetitions) and the relative positions.

We denote by (M(µ))1 = {k1, . . . , kt} and (M(µ))2 = {h1, . . . , ht} the pro-
jections of M(µ), and by µki,hi the occurrence of the motif µ in string ki starting
at position hi (that is, ski [hi . . . |µ| − 1] = µ).

A module is defined as an ordered sequence of characters of Γ that orderly
occurs in a given input sequence and a pair of integers representing the minimum
and maximum distance between two adjacent motifs in the considered structured
motif. Let N⊥ = N ∪ {⊥}.
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Definition 2 (Module). A module φ is a triple(
〈µj〉j∈〈1,...,J〉, dmin, dmax

)
∈ (Γ ? × N⊥ × N⊥),

such that for some k ∈ ((M(µj))1 ∩ (M(µj+1))1) and all j < J , there exist
(k, h) ∈ M(µj) and (k, h′) ∈ M(µj+1), for which

dmin ≤ |h′ − h| ≤ dmax.

Formalization of the problem

Our goal is to find all modules that occur in at least q different sequences of
F and satisfy constraint on composing motifs and their relative distances. Each
module occurrence (〈µ1µ2 . . . µJ〉, dmin, dmax) is a subsequence built with the
strings µ1, µ2, . . . , µJ (in this order) and satisfying d ≤ dmin and D ≥ dmax,
where d (resp. D) is the minimum (resp. maximum) distance between (starting
points of) µj and µj+1.

Fig. 1. For q = 1 (no constraints on the number of strings) there are 3 modules of length
2:[motif1, motif3], [motif2,motif3] and [motif3,motif2]. For q = 2 there is 1 module of
length 2: [motif1, motif3]. For q = 3 there are no modules. [motif1, motif2, motif3] is
not a module of length 3 because in String1 the distance between motif1 and motif2 is
lower than d.

The complexity of the problem is dominated by |Γ |J . If J is a constant, then
the complexity of the decision test and of finding all the solutions is polynomial.
Otherwise, if J is part of the input, |Γ |J grows exponentially on the inpout. In
this case, finding all the solutions is inherently exponential. We have to figure
out whether the associated decisional problem is NP complete or not.
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4 Encoding in CLP(FD)

Given the alphabet Γ of motifs, a set F = {s1, . . . sk} of strings, and a list
holding the occurrences of each motif in each string, our aim is to find out all
the possible modules of length t with occurrences above a given threshold q, i.e.,
modules with at least t Γ -characters that appear in a number of strings greater
than or equal to q. Moreover, we require modules to satisfy minumum/maximum
constraints on relative distances between composing motifs. Whenever we find
a module, we want to count its occurrences in each one of the strings where
it is present and to keep track of the positions where it occurs. We decided to
encode this problem using Constraint Logic Programming over Finite Domains
(in particular, SICStus 4 with clpfd).

The main predicate is mod search(+M, +Q, +Lb, +Lb), where M is the num-
ber of motifs present in the string set F , Q is the lower bound on the number of
strings where each module must appear, and Lb (resp. Ub) is the lower (resp. up-
per) bound on the distance between subsequent motifs in a module. mod search
retrieves from a file a list L = {l1 . . . lk} of lists containing the occurrences of
each motif in each string. For each 1 ≤ i ≤ k, list li = {`i1 . . . `iM} is a list of
lists containing the occurrences of each motif in string si. For each 1 ≤ j ≤ M ,
list `ij contains the occurrences of the j-th motif in string si. As an example, list
L = [ [[1, 38], [24], [55, 70]], [[12], [], [1, 25, 47]] ] gives the information that there
are 2 strings and 3 motifs.
In the first string

– the first motif occurs in positions 1 and 38;
– the second motif occurs in position 24;
– the third motif occurs in positions 55 and 70.

In the second string

– the first motif occurs in position 12;
– the second motif does not occur;
– the third motif occurs in positions 1, 25, and 47.

Predicate mod search definition mainly exploits two predicates, callconstrain
and allsolutions. The first one looks for the presence of each structured motif
of length 2 in the different strings of F ; the second one distinguishes between the
structured motifs that appear in at least Q strings (modules) and the other ones.
For each module (structured motif of the former type), it counts its occurrences
in every string where it appears and it keeps trace of the positions where it
occurs.

As far as predicate callconstrain is concerned, to perform the search
of a single structured motif in a single string it takes advantage of predicate
onestring (+Lb, +Ub, +S, +[A,B], -V AB , -M AB, -N AB), where Lb and
Ub are the input lower and upper bounds, S is a list of lists, which contains the
occurrences of each motif in a given string, [A,B] is a structured motif of length
2 made by motif A and motif B, V AB is a boolean variable and M AB, N AB are
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the positions where the structured motif occurs. Variable V AB is set to 1 if in
the given string there exists a pair of motif occurrence positions M AB and N AB
such that Lb ≤ N AB - M AB ≤ Ub; otherwise V AB is set to 0 and M AB and N AB
are set to -1.

The definition of predicate onestring/7 is the following:

onestring(Lb,Ub,S,[A,B],V_AB , M_AB,N_AB):-
nth1(A,S,L1), % L1 is the occurrences list of A in S
nth1(B,S,L2), % L2 is the occurrences list of B in S
list_to_fdset(L1,D1),
list_to_fdset(L2,D2),
M_AB in_set D1, % M_AB is the position of A in S
N_AB in_set D2, % N_AB is the position of B in S
N_AB-M_AB #>= Lb, N_AB-M_AB #=< Ub, !, V_AB #= 1. (*)

onestring(_,_,_,[_,_],0 , -1,-1).

Since in the library clpfd of SICStus Prolog the domains of variables are
internally represented as FD set terms, we use operation list to fdset to turn
the list of occurrence positions of each motif in each string into a FD set. Then
we take advantage of operation in set to state the belonging of the occurrence
position of each motif of the structured motif in each string in the proper FD
set.

As far as predicate allsolutions is concerned, its inputs are the threshold
Q and, for each structured motif, a list of boolean variables Bool and a list of
M AB and N AB values (the length of Bool equals |F| = k because we associate
a boolean variable to each string). Given a structured motif, if it appears in
at least Q strings, that is, sum(Bools,#>=,Q), then we count its occurrences in
each string where it is present; otherwise we avoid it. To count such occurrences
and to keep trace of them, we use a standard mechanism based on assert and
retract.
The source code is available at http://www.dimi.uniud.it/demaria/modules.html.

5 Results

We carried out several tests on an AMD Opteron 2.2 GHz Linux machine. First
of all, we tested our program on a data set consisting in 26 strings of length 500
containing 23 motifs of length 6. Following biologists suggestions, we constrained
the distance between subsequent motifs in a module to belong to the interval
[10,90] and we looked for modules of length 2 appearing in at least q strings,
with q ≥ 1. The results of the test are presented in Figure 2. As the threshold q
increases, the number of modules satisfying the constraint decreases. The mini-
mum q such that there are not modules which satisfy the constraint is 15. As far
as execution time is concerned, it decreases when q increases, that is, the number
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of modules decreases. In fact, the less modules are, the less module occurrences
to count are and the less assert and retract operations are needed.

Quorum Modules Time(ms)

1 385 410
2 275 350
3 198 300
4 143 270
5 117 240
6 94 250
7 60 190
8 39 190
9 24 190
10 12 180
11 8 150
12 3 170
13 1 180
14 1 170
15 0 150

Fig. 2. Modules search on 26 strings of length 500. Decreasing of module number and
execution time according to the growth of the quorum.

The results of such tests were analyzed by biologists who extrapolated rele-
vant conclusions. In fact one of the input motifs, namely GCAGNG, was classified
by biologists as an unknown one. Surprisingly our test showed that such a motif, a
part from being abundant, is the first component of a module ([GCAGNG,GCTGNG])
that appears very often (in 11 strings). Such a result has a biological relevance
because it means that the unknown motif appears very often in combination
with other known motifs.

Another experiment consisted in testing our program on 7 data sets, each
one made by 20 strings of length 500, 1000, 1500, 2000, 2500, 3000, and 3500
respectively and containing 15, 21, 27, 33, 39, 42, and 50 motifs respectively. In
order to compare execution times, we launched our program on each data set
with q = 12 and, as in the previous experiment, we constrained the distance
between subsequent motifs in a module to belong to the interval [10,90]. The
results are present in Figure 3. Time increases quickly because at each step we
increase not only the strings length (and consequently the number of occurrences
of different motifs in each string) but also the number of motifs.

At last, we tested our program on 10 data sets consisting respectively of
10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 strings of length 500. Each data set
contains 15 motifs. We launched our program with q equal to the number of
strings divided by 2. The results are present in Figure 4.
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String length Motif number Time(ms)

500 15 110
1000 21 650
1500 27 1960
2000 33 5100
2500 39 15800
3000 42 29170
3500 50 51450

Fig. 3. Modules search on data sets of 20 strings with increasing length and motif
number. Growth of execution time according to string length and motif number.

String number Time(ms)

10 110
20 130
30 210
40 300
50 360
60 410
70 500
80 550
90 620
100 710

Fig. 4. Modules search on data sets with increasing number of strings. Growth of
execution time according to the cardinality of the data set (string number).
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6 Conclusions and Future work

Our program for extracting modules can be easily extended in several directions.
First of all, it is immediate to generalize it to the research of modules of lengths
greater than 2. Modules of length 3 could be thought as a combination of a motif
with a module of length 2. Using such an approach, modules of length greater
than 2 can be searched recursively. If we were asked to look for a restricted
number of modules, we could improve the research by adopting a strategy that
consists in considering at first motifs which occur in a greater number of strings,
maximizing in such a way the chances to find modules which respect the quorum
on the number of strings. We could start considering neighborhoods of radius
greater than Ub of the occurrence positions of the most frequent motif, then look
for occurrences of frequent motifs in these neighborhoods and so on.

Another possible extension concerns the constraints to impose when looking
for a module in a set of strings. As an example, it would be reasonable to consider
only modules that are sufficiently distant from the the beginning or the end of
the string. As another example, biologists are interested in modules whose set
of beginning positions in the different strings where they appear is limited by
a lower and an upper bound. Such constraints can be very easily added to our
program. After substituting the last line of predicate onestring (*) by the reified
constraint

V_AB #<=>(N_AB-M_AB #>= Lb #/\ N_AB-M_AB #=< Ub),

one can add in predicate allsolutions explained in Section 4 constraints on the
2 lists containing respectively V AB variables (one boolean variable is associated
to each string) and M AB and N AB values.
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Abstract. Temporal logics and model-checking techniques have proved
successful to respectively express biological properties of complex bio-
chemical systems, and automatically verify their satisfaction in both
qualitative and quantitative models. In this paper, we propose a finite
time horizon model-checking algorithm for the existential fragment of
LTL with numerical constraints over the reals, with the ability to com-
pute the range of values of the real variables occurring in a formula that
makes it true in a model. We illustrate this approach for the analysis of
biological data time series, provide a set of biologically relevant patterns
of formulas, and evaluate them on a model of the cell cycle control.

1 Introduction

Temporal logics and model-checking techniques [1] have proved useful to respec-
tively express biological properties of complex biochemical systems and auto-
matically verify their satisfaction in both qualitative and quantitative models,
i.e. in boolean [2–4], discrete [5, 6], stochastic [7, 8] and continuous models [9, 10,
3]. This approach relies on a logical paradigm for systems biology that consists
in making the following identifications [11]:

biological model = transition system
biological property = temporal logic formulae

biological validation = model-checking

Having a formal language not only for describing models, i.e. transition sys-
tems by either process calculi [12–16], rules [2, 17, 18], Petri nets etc..., but also
for formalizing the biological properties of the system known from biological
experiments under various conditions, opens a whole avenue of research for de-
signing automated reasoning tools inspired from circuit and program verification
to help the modeler [19]. However, the formalization of the biological properties
as a specification in temporal logic remains a delicate task and a bottleneck of
the method.

In this paper, we investigate the use of this logical paradigm to analyze nu-
merical data, and infer temporal logic specifications from experimental data time



31

series. There has been work on the inference of correlations and positive and neg-
ative influences between entities from numerical data time series, especially for
gene expression temporal data [20, 21]. However, to our knowledge, the inference
of temporal logic formulae with real valued variables from numerical data time
series is new.

In this paper, we generalize the finite time horizon model-checking algorithm
described in [9] to the existential fragment of LTL with numerical constraints
over the reals. This first-order setting provides the ability to compute those
instantiations of a formula that are true in a model, by giving the range of
values of the real valued variables occurring in the formula for which it is true.

We illustrate the relevance of this approach to the analysis of biological data
time series, by providing a set of biologically relevant patterns of formulas and
by evaluating them on models of cell cycle control in Sec. 3. We then conclude
on the results achieved so far, their generality, and their use in on-going work.

2 Formula Instantiation in Constraint-LTL over Reals

The Linear Time Logic LTL is a temporal logic [1] that extends propositional or
first-order logic with modal operators for qualifying when a formula is true in a
tree of timed states, called a Kripke structure.

We consider LTL formulas with real valued variables and inequality con-
straints. More precisely, the language of constraint-LTL formulae considered in
this paper is defined by the following grammar :

Constraint− ltl =

Atom | F (Constraint− ltl)

| G(Constraint− ltl) | X(Constraint− ltl)

| (Constraint− ltl)U(Constraint− ltl)

| (Constraint− ltl) and (Constraint− ltl)

| (Constraint− ltl) or (Constraint− ltl)

| (Constraint− ltl) ⇒ (Constraint− ltl)

| not (Constraint− ltl)

Atom =

V alue Op V ariable | V alue Op V alue

Op =

< | > | ≤ | ≥
V alue =

float | [molecule] | d[molecule]/dt | d2[molecule]/dt2

| V alue + V alue | V alue− V alue | − V alue | V alue× V alue

| V alue/V alue | V alueV alue

By an obvious transformation, negations and implications can be eliminated,
by propagating the negations down to the atomic constraints in the formula.
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From now on, we will assume that all constraint-LTL formulae are in negation
free normal form.

Traces considered are linear Kripke structures in which constraint-LTL for-
mulae can be interpreted. Since constraints refer not only to concentrations, but
also to their derivatives, traces are of the form

(< t0, x0, dx0/dt, d
2x0/dt

2 >,< t1, x1, dx1/dt, d
2x1/dt

2 >, ...)

where at each time point, ti, the trace associates the concentration values xi
of the variables, and the values of their first and second derivatives dxi/dt and
d2xi/dt

2. For instance F([A]>10) expresses that the concentration of A even-
tually gets above the threshold value 10. G([A]+[B]<[C]) expresses that the
concentration of C is always greater than the sum of the concentrations of A
and B.

Given a trace T representing a linear Kripke structure, and a constraint-LTL
formula φ with n variables, the formula instantiation problem, ∃v ∈ Rn (φ(v)),
is the problem of determining the valuation v of the variables for which the
formula φ is true in T . In other words, we look for the domain of validity of the
variables Dφ ⊂ Rn such that T |=LTL ∀v ∈ Dφ (φ(v)).

The domain of validity Dφ of φ can be computed using an algorithm that
generalizes trace-based model-checking [9]:

Algorithm 1 (trace-based constraint-LTL formula instantiation) Given
a finite trace and a temporal property φ with variables,

1. label each trace point by the atomic sub-formulae of φ and their domain of
validity as follows :
– for an atomic formula ψ without variables, label a time point ti by

(ψ,Dψ(ti) = Rn) if ψ is true at time ti, and (ψ,Dψ(ti) = ∅) otherwise;
– for an atomic formula [A] ≥ p (that is, of the form value ≥ variable)

label a time point ti by ([A] ≥ p,D[A]≥p(ti)) where D[A]≥p(ti) is the half-
space of Rn defined by p ≤ [A](ti);

– proceed similarly for other atomic formulae containing variables;
2. starting from the end of the trace, label each time point ti by the sub-formula

Fψ and its domain of validity DFψ(ti) = DFψ(ti+1) ∪ Dψ(ti);
3. starting from the end of the trace, label each time point ti by the sub-formula

Gψ and its domain of validity DGψ(ti) = DGψ(ti+1) ∩ Dψ(ti);
4. starting from the end of the trace, label each time point ti by the sub-formula

ψ1Uψ2 and its domain of validity Dψ1Uψ2(ti) = Dψ2(ti) ∪ (Dψ1Uψ2(ti+1) ∩
Dψ1(ti));

5. label each time point ti by the sub-formula Xψ and its domain of validity
DXψ(ti) = Dψ(ti+1);

6. label each time point ti by the sub-formula ψ1 or ψ2 and its domain of validity
Dψ1 or ψ2(ti) = Dψ1(ti) ∪ Dψ2(ti);

7. label each time point ti by the sub-formula ψ1 and ψ2 and its domain of
validity Dψ1 and ψ2(ti) = Dψ1(ti) ∩ Dψ2(ti);

8. return the domain Dφ(ti) for all time points ti where it is not empty.
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This algorithm enjoys a strong completeness theorem for the chosen fragment
of constraints over the reals.

Theorem 1. The instantiation algorithm is correct and complete: a valuation
v makes φ true at time ti, T, ti |=LTL (φ(v)), if and only if v is in the computed
domain of φ at ti, v ∈ Dφ(ti).

Now, let us define a polytope of Rn as a finite intersection of half-spaces and
the size S(D) of a domain as the minimum number of polytopes the domain is
made of.

Theorem 2. In the worst case, the size of the validity domain of a LTL formula
of size k on a trace of length n is nk

2
.

3 Application to the Inference of Temporal Properties
from Biological Time Series

Temporal logic is sufficiently expressive to formalize a wide range of biologi-
cal properties known from experiments under various conditions. The formula
instantiation algorithm in constraint-LTL makes it possible to analyze concen-
tration traces and obtain semi-quantitative information such as:

Reachability : F([A]>=p), what threshold p species A attain in the trace ?
Stability : G([A]=<p1 & [A]>=p2), what is the range of values taken by [A] ?

This range can be looked for in some context given by a condition like in
G(Time>10 -> ([A]<p1 & [A]>p2)).

Oscillation : F((d([A])/dt>0 & [A]>v1) & (F((d([A])/dt<0 & [A]<v2)))),
what amplitude (v1− v2) is attained in at least one oscillation ? An oscilla-
tion is defined as the change of sign of the derivative. This formula can be
extended for more oscillations and is abbreviated by oscil(M,K,p). It states
that M must have amplitude p in at least K oscillations. By applying the
algorithm for each value of K, beginning with 1, we can find the number of
oscillations in the trace and minimal amplitude p attained by K oscillations
for any K.

Influence : G(d[A]/dt>p1 -> d2[B]/dt2>=0), above which threshold does the
derivative of A have an influence on B ? The influence is positive if a high
value of d[A]/dt entails a positive second derivative of [B]. It is worth notic-
ing that, as multiple species might influence B, this formula only indicates a
correlation between the value of the derivative of A and the second derivative
of B and gives no proof of direct influence.

3.1 Cell Cycle Simulation Data

For the purpose of evaluation of the method, we use here simulation data ob-
tained from a model of the cell cycle in budding yeast [22]. Concentration traces
are obtained by simulating the cell cycle control model in Biocham [18]. Then,
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we try to recover relevant properties of the model by automatically analyzing
the traces.

Notations ~{p1} and ~{p1,p2} denote phosphorylated forms of a molecule,
that is the addition of a phosphate group to a molecule. Figure 1 displays a
simulation trace obtained in this model for four species of this model.
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 0  20  40  60  80  100

Cdc2-Cyclin~{p1}
Cdc2-Cyclin~{p1,p2}

Cdc2
Cyclin~{p1}

Fig. 1. Budding yeast cell cycle simulation trace over 100 time units made of 94 time
points.

A reachability query provides the maximum concentration attained by an
entity. The result returned is a list of domains represented by lists of constraints
on the variables.

biocham: trace_analyze(F([Cdc2-Cyclin~{p1}]>=v)).

[[v=<0.194]]

Here a single domain is returned with a single constraint on v. The most rele-
vant value in this domain is its boundary, 0.194, which is here the maximum
concentration of Cdc2-Cyclin~{p1} in the trace. Table 1 gives the maximum
reachable values for the four species displayed in Figure 1.

For stability, let us find the range of values taken by [Cdc2] in the last third
part of the trace:

biocham: trace_analyze(G(Time>66 -> ([Cdc2]=<v1 & [Cdc2]>=v2))).

[[v1>=0.479, v2=<0.338]]

The domain is defined by the conjunction of the two constraints v1 >= 0.479
and v2 =< 0.338. These values are the maximum and minimum values attained
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Reachability Stability Amplitude of at least n oscillations
Species n = 1 n = 2

Cdc2 0.500 (0.338,0.479) 0.141 0.138
Cdc2-Cyclin~{p1,p2} 0.311 (0.005,0.310) 0.306 0.306
Cdc2-Cyclin~{p1} 0.194 (0.002,0.194) 0.192 0.192
Cyclin~{p1} 0.159 (0.004,0.158) 0.155 0.154

Table 1. Results for reachability (maximum value), stability (bottom and top values
in the last third part of the trace) and amplitude of at least n oscillations.

by [Cdc2] in the last third part of the trace. The results for the other species
are given in Table 1.

An oscillation query may compute several interval domains:

biocham: trace_analyze(oscil(Cdc2,1)).

[[v2>=0.338, v1=<0.479], [v2>=0.341, v1=<0.479]]

The result is the union of two boxes. In such domains, the most relevant point is
not obvious. Here we look for the maximum amplitude v1− v2. The maximum
is obtained in the domain with v1 − v2 = 0.479 − 0.338 = 0.141. This result
states that at least one oscillation of Cdc2 has an amplitude greater or equal to
0.141. The number of oscillations is then incremented until obtaining an empty
validity domain. It is obtained for Cdc2 with the query oscil(Cdc2,3), stating
that there are only two oscillations of Cdc2 in the trace.

The results for the other species are given in Table 1. Obtaining the amplitude
of the oscillations is useful to distinguish between mixed amplitudes oscillations
in the trace. For instance, in noisy data the amplitude can be used to count the
number of oscillations regardless of small noise induced oscillations.

The influence of a molecule A on a molecule B is looked for with formula
G(d[A]/dt>p1 -> d2[B]/dt2>0). The idea behind this formula is that if a
species B appears only in a reaction rule of the form A → B with a mass
action law kinetic, the following constraint-LTL formulae are true : G(d[A]/dt >
0 ⇒ d2[B]/dt2 > 0) and G(d[A]/dt < 0 ⇒ d2[B]/dt2 < 0). Table 2 gives
influence scores based on the results of these formulas for species Cdc2 and
Cdc2-Cyclin~{p1,p2}.

3.2 Experimental Data

Experimental data for measuring the evolution over time of gene expression
levels or of protein concentrations, typically involve between 6 and 50 time points
taken at regular intervals. Furthermore, experimental data are noisy, and it is
not one trace but several ones that have to be analyzed in order to extract their
significant features. The strategy here is thus to analyze the traces separately
and retain the intersection set of their properties, or the most frequent ones only.

In order to evaluate the instantiation algorithm on similar experimental-like
concentration traces, we extracted eleven equally spaced time points from the
cell cycle simulation trace. The obtained trace is displayed in Figure 2.
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Species Cdc2 Cdc2-Cyclin~{p1,p2}

Cdc2 0.00 0.11
Cdc2~{p1} 0.01 0.12
Cyclin 0.00 0.34
Cdc2-Cyclin~{p1,p2} 0.00 0.02
Cdc2-Cyclin~{p1} 0.90 0.00
Cyclin~{p1} 0.50 0.09

Table 2. Positive influence scores of all species on Cdc2 and Cdc2-Cyclin~{p1,p2}.
Molecules appearing in rows (resp. columns) act as molecule A (resp. B) in formulae
G(d[A]/dt > v1 ⇒ d2[B]/dt2 > 0) and G(d[A]/dt < v2 ⇒ d2[B]/dt2 < 0) used to
compute these scores.

Reachability Stability Amplitude of at least n oscillations
Species n = 1 n = 2

Cdc2 0.500 (0.341,0.441) 0.125 0.089
Cdc2-Cyclin~{p1,p2} 0.311 (0.031,0.308) 0.279 0.222
Cdc2-Cyclin~{p1} 0.194 (0.002,0.194) 0.192 0.012
Cyclin~{p1} 0.100 (0.005,0.100) 0.095 0.018
Table 3. Results for reachability, stability and oscillation queries in experimental-like
data.

We applied on this trace the queries used on the original simulated one, results
are given in Tables 3 and 4. Oscillations properties are still obtained but with
smaller amplitudes, because the peaks are missed in the sampling. For instance,
Cdc2-Cyclin~{p1} has one oscillation of size 0.192 but two oscillations of size
only greater than 0.012. This is a limit inherent to a low number of time points
as the first peak of Cdc2-Cyclin~{p1} almost disappeared in this trace. Having
a small number of time points also tends to give high self positive influence scores
but considering only highest scores except self influence still correctly determines
the influence between species.

4 Conclusion

Considering the bottleneck of specifying in temporal logic with numerical con-
straints the biological properties of a system known from experiments, we have
proposed an algorithm for inferring constraint-LTL formulae from numerical
data time series. To this end, the finite time horizon model-checking algorithm
described in [9] has been generalized to an instantiation algorithm in the ex-
istential fragment of LTL with numerical constraints over the reals. A strong
completeness theorem stating that the ranges of real valued variables computed
for a formula describe exactly the solution space, has been shown, together with
a complexity bound in nk

2
on the representation of the domain, where n is the

number of time points and k the size of the formula.
For the purpose of evaluating the method, we worked with time series gen-

erated from models by simulation, and considered one experimental-like time
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Fig. 2. Curve of concentrations every 10 units of time extracted from the cell cycle
simulation trace.

Species Cdc2 Cdc2-Cyclin~{p1,p2}

Cdc2 0.59 0.00
Cdc2~{p1} 0.59 0.00
Cyclin 0.00 0.73
Cdc2-Cyclin~{p1,p2} 0.00 0.59
Cdc2-Cyclin~{p1} 0.49 0.00
Cyclin~{p1} 0.48 0.00

Table 4. Positive influence scores of all species on Cdc2 and Cdc2-Cyclin~{p1,p2}.

series extracted from the simulation trace in few time points taken at regular
intervals of time. In the near future, we plan to apply the method to the analysis
of experimental temporal data of FSH signaling proteins for designing a model
of FSH signal transduction together with its temporal specification, and proceed
similarly with cell cycle and circadian cycle data for cancer chronotherapies in
the framework of the EU project Tempo1.
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Abstract. Intelligent drug design requires a good understanding of protein 
interaction mechanisms. The rapid advance of high-throughput methods of 
protein structure determination gives us an exponential growth in known 
protein structures, but the problem of determining the structure of protein 
complexes is still a hard one to solve, especially for fast transient interactions, 
which are very common in catalysis and important targets for drugs. In this 
paper we present a modeling approach for trying to predict protein-protein 
complexes [1,2] by using constraint propagation techniques to incorporate 
information about the mechanism [3], and also to speed up calculations and 
make it more practical to compare a large number of docking simulations with 
similar partners in order to overcome the difficulty of modeling very weak 
interactions. As an example, we tested this approach on an electron transfer 
interaction that is part of photosynthesis in plants (FNR-ferredoxin).  

1. Introduction 

The improvement of experimental methods of protein structure determination 
provides an exponentially growing set of protein structures, freely available on the 
Protein Data Bank. Nevertheless, experimental determination of transient protein 
complexes is still extremely difficult. At the time of writing (June 2007) the Protein 
Data Bank contains over 44 thousand structures, but only five hundred transient 
complex structures according the latest version of PROTCOM database [4], with the 
disparity being higher for weaker interactions. Given that catalytic action requires a 
high turnover, and thus a weak interaction, this means that the more important the 
system the harder it is to determine the complex structure by experimental methods. 
This justifies the importance of docking algorithms to model protein interactions from 
the known structures of the partners, for understanding such interactions is crucial at 
many levels, from fundamental research in biochemistry through medicine and drug 
design. 

Two decades since the pioneering work of Katzir and others [5] have seen 
significant developments in algorithms to generate models and scoring functions to 
select the most likely candidates. Examples from the CAPRI (Critical Assessment of 
Protein Interactions) experiment [6] illustrate the diversity of protein interaction 
modelling packages currently available. A common trend in these approaches is to try 
to model interactions using only knowledge derived from the structure and 
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physicochemical properties of the proteins involved. Some algorithms have been 
developed [1, 7] or adapted [8] to use data on the interaction mechanisms, but this 
approach is still the exception rather than the norm. Our algorithm, BiGGER 
(Bimolecular complex Generation with Global Evaluation and Ranking), is one of 
these exceptions, and the Chemera modelling package has been developed from the 
start to help the researcher bring into the modelling process as much data as available. 
Previous results show that BiGGER can be a powerful modelling tool when used in 
this manner [e.g. 2, 9, 10, 11, 12, 13]. In the following sections we will highlight 
some aspects of these results to provide context for our current research. 

The main motivation for the multiple partners and multiple dockings approach is 
that the same reasons that make transient complexes difficult to determine make them 
difficult to model. For such weak and fast interactions surface contact area can be 
small, and electrostatics and solvation effects may play a more subtle role in guiding 
the partners instead of attaching them strongly together. Furthermore, the real 
“complex” may actually be a population of configurations the partners move through 
in an interaction rather than a more lasting structure. 

This paper gives an overview of different levels at which docking simulations can 
help elucidate interaction mechanisms. The goal at the more detailed level is to 
predict the structure of a protein complex, but for transient interactions this is often 
not feasible, or even meaningless, as these interactions are fluid and dynamic rather 
than static assemblies. So we move on to the next level of providing ensembles of 
models that capture the likely dynamics of the interaction. Experimental data provides 
constraints at this stage to narrow down the possibilities, and to provide a different 
kind of analysis. Section 3.2 shows how constrained docking was used to find regions 
of fibrinogen susceptible to cleavage by a protease, even though in this case specific 
models of the complex would be neither reliable nor useful. Section 3.3 presents our 
current work in taking this approach even further. Models of transient complexes are 
not sufficiently reliable to detect minor modifications, such as the interference of a 
small molecule like most drugs. However, we show that it is possible to detect the 
effects of even small changes by standing back from the detail and assessing the 
pattern of docking models generated by BiGGER. Combining information from 
simulations with different partners and considering thousands of models together 
seems to be a powerful way of predicting some aspects of transient interactions.  

The ability to predict the effect of small changes in protein structure or chemistry 
can be used in protein engineering (e.g. in guiding site directed mutagenesis 
experiments), diagnosis of genetic diseases due to particular combinations of alleles, 
predicting side effects of drugs, and potentially aiding future techniques such as gene 
therapy. 

The paper is organized as follows. Section 2 explains the protein docking problem, 
which is to model the interaction between two proteins by determining how the two 
docking partners fit together, and the BiGGER algorithm, and gives an overview of 
our method. Section 3 illustrates the different levels of information provided by 
docking simulations with examples from previous and current work. Section 4 
concludes this paper and discusses plans for future work. 

BiGGER and Chemera are available at http://www.cqfb.fct.unl.pt/bioin/chemera/ 
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2. The Docking Method 

The foundation of the method described here is the BiGGER docking algorithm [1,2]. 
Like many other docking algorithms, BiGGER represents the protein structures using 
a regular cubic lattice of cells. Thus grid is a very straightforward representation 
where each cell can be either an empty cell, a surface cell, or a core cell. The surface 
cells define the surface of the protein, with the overlap of surface cells indicating a 
surface contact. 

This grid representation has been optimized to model macromolecular interactions 
by fine-tuning the placement of the surface region relative to the structure to be 
modeled. Surface cells lie outside the Van der Waals surfaces of the atoms. When 
these surface cells overlap with those of another grid, the placement of the grids 
corresponds to a small separation of the Van der Waals surfaces on the protein 
complex, which is more realistic than actual Van der Waals contact.  

The core cells are used to rule out overlaps, since overlapping core cells indicate 
that parts of the two structures are occupying the same space. Overlap between core 
and surface cells can be ignored because in our model the surface region corresponds 
to a layer external to the structure, as explained above. This makes it possible to 
model some flexibility, especially of exposed side chains, by removing their 
respective core region cells. This still favors surface contacts with the structure as 
specified by the PDB file, but allows the overlap or the more flexible side chains, 
which simulates their ability to rearrange during complex formation. This soft 
docking method is described in more detail in [1]. 

2.1 The Geometric Search 

Given the definitions of allowed configurations and of how to measure surface 
contact, one can search all configurations by moving one grid relative to the other and 
examining the overlapping cells of the two grids. This translation search must be 
repeated for each orientation of one partner relative to the other, in order to search the 
rotation space as well. Typically, the rotational space is sampled in steps of 15º 
around each of the three orthogonal axes of rotation, for a total of approximately six 
thousand orientations. 

The translation space is searched in small steps in all directions, each step 
corresponding to the size of one grid cell (1Å cube). BiGGER reduces the large 
number of possibilities by pruning the regions where the search can be determined to 
produce no useful models, using constraint propagation techniques. For details, please 
see [3], but most of the efficiency comes from encoding the grids as lists of intervals 
specifying the segments of similar cells along the X coordinate instead of encoding 
each cell individually. These lists are arranged in a two-dimensional array on the Y-Z 
plane. 

This encoding reduces the memory requirements for storing the grids by more than 
two orders of magnitude relative to the classical Fast Fourier Transform approach [5] 
and also improves search efficiency. 



43

2.2. Scoring 

The geometric search is the first step in generating adequate models. At this stage 
BiGGER retains the configurations with the highest surface, typically 1000 or 5000. 
After the full search through all relative displacements and orientations, BiGGER 
scores these candidate models according to surface contact (number of overlapping 
surface cells), electrostatic interactions (based on a simple Coulombic model), 
estimated effect of desolvating the contact regions (solvent exclusion) and a statistical 
evaluation of side-chain contacts at the interface. 

These measures are aggregated with a neural network trained to distinguish correct 
from incorrect models [1], and ranked according to the aggregated value.  

2.3 Using Experimental Data 

In some cases there is information about distances or contacts between parts of the 
proteins. This may be the distance between the redox centers to allow electron 
transfer, distance to active sites in general, NMR titration data indicating 
perturbations at some residues, site directed mutagenesis experiments, and so forth. 

The main problem is that experimental data is always noisy, so it is not feasible to 
simply impose a constraint forcing all contacts and distances suggested by the data. 
The most common situation is to have a set of likely distance constraints of which not 
all necessarily hold. Typically, we have to impose a constraint of the form: 

At least K atoms of set A must be within R of at least one atom of set B (1) 

where set A is on one protein and set B on the other, and R a distance value. This 
leads to a combinatorial problem with a large number of disjunctions that can be 
solved by simply evaluating each candidate structure generated. Any docking method 
is suited to incorporate experimental data in this generate-and-test fashion, and this 
was our first approach [10, 11, 12,]. However, this approach is very inefficient, and 
BiGGER is especially suited to incorporate these constraints by pruning the search 
space and decrease computation time. This is currently implemented, and was already 
used in published work [3, 13]. It is especially important when doing a large number 
of comparative docking runs, in the multiple docking method (below). 

2.4 Multiple docking 

Previous work showed us the importance of comparing different docking simulations. 
For example, in [12], we compared the models generated for the interaction of 
ferredoxin with ferredoxin NADP reductases from different organisms. The purpose 
was to validate the method with known complex structures to support the prediction 
of a novel complex, and this involved comparing only a few simulations. Even so it 
revealed the difficulties in processing large data sets of hundreds or thousands of 
relevant models. 

Multiple docking is an extension of this to a large number of simulations, 
combining different partners in order to extract higher level of information such as the 
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likely relative affinity, dominating factor for the interaction, most likely interface 
regions, and so forth. While the basic idea is simply to do a large number of docking 
runs, it raises some performance issues that can be addressed by the efficient 
incorporation of additional data, and especially it raises the problem of processing the 
results. For example, current work in comparing different ferredoxin and ferredoxin 
reductase complexes involves six reductases, eight ferredoxins, 48 different docking 
simulations, and tens of thousands of models. 

2.5 Interpreting results 

The complexity of multiple docking results motivated our recent focus in better ways 
to interpret the data at a high level. Part of this task is a simple matter of doing 
statistics on the sets of models generated, such as different percentiles for each 
interaction score, maximum and minimum values, and so forth. But one good 
indicator of a reliable docking simulation is the clustering of the models. Figure 1 
illustrates showing two sets of docking models. Each set is represented by the 
structure of one partner surrounded by spheres indicating the geometric center of the 
other partner in each model generated. 

Although we can detect these patterns by visual inspection, it is not practical to do 
so for dozens of docking simulations, and especially hard to compare the results 
without quantifying this distribution. So we developed a simple way to quantify the 
scattering of models. For each pair of models we measure the distance between the 
geometric centers. Thus if we have proteins A and B, for models 1 and 2 we measure 
the distance between the center of A in model 1 and the center of A in model 2, 
considering B fixed, and then do the same for B. With these distance values we build 
a histogram counting the number of occurrences of each distance range (0Å to 1Å, 1Å 
to 2Å and so forth). Finally we divide the number in each bin by the number expected 
if the models were uniformly distributed on the surface of a sphere with a radius 
identical to the average distance between the centers of the two partners, 

  

Fig. 1. The left panel shows a strongly clustered set of docking models (spheres to the left of 
the structure). The right panel shows a set of models with no evident clusters. 

A peak in the distribution at the lower distance ranges indicates clustering, while 
no clustering results in a flat line. This makes it easy to compare many docking runs 
with different partners at the same scale and in a quantifiable manner (the distance 
corresponding to the peak and the peak height). 
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3 Previous Results and Current Work 

The first part of this section covers our previously published work in this area. This 
gives context to the more recent results and current work, and helps explain method as 
a whole. We refer the reader to the cited publications for more details on each case. 

3.1 Modeling Transient Complexes 

Our initial experience with electron transfer complexes was invaluable by revealing in 
first hand the difficulties of modeling transient complexes. To compare the 
interactions of a bacterial Cytochrome c Peroxidase with cytochrome c and non-
physiological partners from different organisms (9) it was necessary to consider 
experimental data (especially titration data) and the interaction mechanism, which 
requires proximity between the redox centers. This was the best way to properly judge 
the interaction scores and evaluate the candidate models to select the most likely 
structures. This effort also revealed the problem of analyzing the results. One docking 
simulation generates thousands of candidate structures, and it proved to be a laborious 
task to compare and analyze even a few simulations. 

3.2 Constrained Docking 

In order to improve results, we included experimental data in the docking simulation 
itself. The first approach was to score the candidate models according to distances or 
contacts between defined regions. The results were promising in modeling electron 
transfer complexes (10, 11, 12, 13) and protein digestion [14], and eventually we 
included the constraints during the search stage instead of at the scoring stage only, in 
order to prune the search space and reduce computation costs. In [3] we report the 
comparison of constrained and unconstrained docking in realistic conditions, for five 
CAPRI [6] targets, where computation time was approximately one fifth that of the 
unconstrained docking.  

3.3 Multiple docking 

We are currently applying the multiple docking method to the interaction of 
ferredoxins with different ferredoxin NADP reductases (FNRs), an important step in 
photosynthesis. One interesting preliminary result is the difference between the 
docking patterns for the interaction of several ferredoxins with the FNR from spinach 
(Spinacia oleracea) when there is an ADP molecule bound to the enzyme. The ADP 
molecule is only about 1% the size of FNR, and the conformational changes on the 
enzyme are minimal (the root mean square deviation between the two structures is 
only 0.26Å).  
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Fig. 2. Normalized histograms for docking 6 ferredoxins (gray solid lines) with spinach FNR. 
On the right side for the FNR without ADP, on the left side FNR with bound ADP. The dashed 
line lower in the graphs shows the control docking with an unrelated protein (phthalate 
reductase from Pseudomonas). 

However, as Figure 2 shows, the effect is quite evident when we quantify the 
clustering in a normalized histogram, as described in section 2.5. With only visual 
inspection of the docking results this would not be noticeable, and any differences in 
the highest ranking models would be attributable to the variations expected from 
modeling weak interactions. 

4. Conclusion 

Transient protein complexes are difficult to model, and the information that can be 
obtained from individual models is unreliable and often unrepresentative of the 
interaction. Dealing with ensembles of models allows us to analyze the results at 
different levels, and trade structural detail for sensitivity to small differences such as 
mutations or bound cofactors and drugs. The role of AI in this method is not, as is 
often the case, to apply one technique to solve part of the problem, but to bring 
together different techniques to attack the problem from different directions. 
Clustering, neural networks, and constraint programming are part of the docking 
algorithm and data processing. Our current work includes reasoning and reactivity to 
help keep interactions analysis synchronized with the availability of new structures.  

The ultimate goal of this approach is to have a computational method sensitive to 
small effects such as point mutations or small molecules on protein interactions, to 
help predict the effects that different drugs or drug combinations can have in different 
people. 
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Abstract. Constraint-based models of metabolic networks use govern-
ing constraints to restrict potential cellular behavior. The range of pos-
sible behaviors, which is mathematically described by the steady-state
flux cone, can be altered by gene deletion. Several optimization-based ap-
proaches have been proposed to find, in the altered network, behaviors
optimizing a particular network function. Here, we present a constraint-
based approach that allows analyzing the changes in the overall capabil-
ities of a metabolic network following a gene deletion. Furthermore, we
establish a relationship between the altered flux cone and the reversibility
type of the reaction associated with the deleted gene.

1 Introduction

Constraint-based models have become a fundamental tool to study genome-scale
metabolic networks [10]. Such models use governing constraints to restrict po-
tential cellular behavior. The range of all possible behaviors, which is mathemat-
ically described by the steady-state flux cone, can be altered by gene deletion.
Several optimization-based approaches have been developed that allow comput-
ing, in the altered network, behaviors optimizing a particular network func-
tion [2]. Mathematically, this requires defining a hypothetical objective func-
tion. However, although the assumption of optimality for a wild-type biological
system is justifiable, the same assumption may not be valid for studying an al-
tered system [15]. Furthermore, these approaches consider only optimal states
with respect to the predefined objective function. These particular states form
a restricted subset of all possible behaviors of the altered system. Hence, these
optimization-based approaches loose information about how the achievable be-
haviors of the network could change following a gene deletion.

In this paper, we analyze the changes in the overall capabilities of a metabolic
network caused by gene deletion. In particular, we show how to obtain in a
constraint-based approach a description of the altered steady-state flux cone.
The analysis is based on a refined classification of reactions.

The organization of this paper is as follows. In Sect. 2, we recall some ba-
sic facts about metabolic network analysis and present the notions of minimal
metabolic behavior and reversible metabolic space. This leads to a refined clas-
sification of reactions. In Sect. 3 we use this for a constraint-based analysis of
gene deletion.



49

4
1

A
3

e

ee

5

4

B

1

2

System boundary

7

6 5

e

e2 3

e

Fig. 1. Network ILLUSNET with the corresponding elementary modes.

2 Metabolic network analysis

In the context of metabolic network analysis, metabolic systems are assumed to
operate at steady state such that for all internal metabolites the flux is balanced.
In addition, the flux through each irreversible reaction must be non-negative.
Fluxes through reversible reactions are not restricted with respect to their sign.
The set of all possible flux distributions over the network at steady state defines
the (steady-state) flux cone [10]

C = {v ∈ Rn | Sv = 0, vi ≥ 0, for all i ∈ Irr}, (1)

where S is the m × n stoichiometric matrix of the network, with m internal
metabolites (rows) and n reactions (columns), and the vector v ∈ Rn gives a
flux distribution. Irr ⊂ {1, . . . , n} denotes the set of irreversible reactions in the
network, and Rev = {1, . . . , n} \ Irr the set of reversible reactions.

Example 1. For illustration we consider the hypothetical network ILLUSNET
depicted in Fig. 1. It consists of two metabolites (A,B), and five reactions
{1, . . . , 5}. The flux cone is defined by C = {v ∈ R5 | Sv = 0, vi ≥ 0, for all i ∈
Irr}, with the set of irreversible reactions Irr = {1, 3}, and the stoichiometric
matrix

S =

(

1 −1 −2 0 0
0 0 3 −1 −1

)

.

The flux cone contains the full range of achievable behaviors of the metabolic
network at steady state. Hence, it is of great interest to describe this cone in
a mathematically and biologically meaningful way. There are two mathematical
ways for describing the flux cone. The first is an inner description based on a
set of generating vectors that span the cone. The second is an outer description
based on sets of constraints, which gives a test for determining whether a given
flux vector belongs to the cone [1].

The concept of elementary mode (EM) [13, 14] has been proposed to char-
acterize the flux cone using an inner description. An EM corresponds to a flux
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distribution v ∈ C \ {0} involving a minimum set of reactions, i.e., the set
Sc(v) = {i ∈ Rev ∪ Irr | vi 6= 0} is minimal. Every possible flux distribution is
then a non-negative combination of elementary modes. In contrast to this ap-
proach, we propose in [7, 9] an outer description of the flux cone, based on sets
of non-negativity constraints. This approach defines a metabolic behavior as a
set of irreversible reactions D ⊆ Irr ,D 6= ∅, such that there exists a flux distri-
bution v ∈ C with D = {i ∈ Irr | vi 6= 0}. A metabolic behavior D is minimal
(MMB), if there is no metabolic behavior D′ ( D strictly contained in D.

The set of flux distributions involving only reversible reactions defines the
reversible metabolic space (RMS),

RMS = {v ∈ C | vi = 0, for all i ∈ Irr}, (2)

which corresponds to the lineality space of the flux cone C [12]. The dimension t

of the reversible metabolic space, by definition, is equal to the dimension of the
lineality space of C, which is a linear subspace of Rn.

The minimal metabolic behaviors (MMBs) are closely related to the minimal
proper faces of the flux cone C, i.e., the faces of dimension t + 1 [12]. According
to [7, 9], each minimal proper face is described by its characteristic set D = {j ∈
Irr | vj > 0, for some v ∈ G}. Indeed, G is given by

G = {v ∈ C | vi = 0, for all i ∈ Irr \ D}. (3)

The characteristic set D is uniquely determined by G and all reactions from D

are proportional to each other. The next theorem shows that the MMBs are in
a 1-1 correspondence with (the characteristic sets of) the minimal proper faces
of the flux cone C.

Theorem 1 ([9]). Let D ⊆ Irr be a set of irreversible reactions. Then, the
following are equivalent:

– D is a minimal metabolic behavior.
– D is the characteristic set of a minimal proper face of the flux cone.

If G1, . . . , Gs are the minimal proper faces of the flux cone C, the corresponding
MMBs D1, . . . ,Ds together with the RMS completely define C, see [7, 9] for
additional details.

Example 2. In the metabolic network from Fig. 1, there are six elementary modes
{e1, . . . , e6}. The MMBs, the corresponding minimal proper faces and the RMS
are the following:

D1 = {1}, D2 = {3},
G1 = {v ∈ C | v1 ≥ 0, v3 = 0}, G2 = {v ∈ C | v3 ≥ 0, v1 = 0},
RMS = {v ∈ C | v1 = 0 and v3 = 0}

Fig. 2(a) shows a 3D illustration of the flux cone C. The RMS is a line generated
by the flux distribution v = (0, 0, 0, 1,−1), i.e., RMS = {λ(0, 0, 0, 1,−1) | λ ∈
R}. The minimal proper faces G1 and G2 are two half-planes.
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Note that minimal metabolic behaviors satisfy a simplicity condition similar
to the one that holds for elementary modes. Furthermore, for each MMB D,
there exists at least one EM e involving exactly the irreversible reactions from
D, i.e., D = {i ∈ Irr | ei 6= 0}. The number of MMBs is typically much smaller
than the number of EMs. For instance, the central carbon metabolism of E.
coli contains more than 500000 elementary modes [5], but only 3560 minimal
metabolic behaviors. The RMS for this metabolism is reduced to the origin, i.e.,
RMS = {0}.

The MMBs and the RMS of a metabolic network can be determined from a set
of generators of the flux cone C. Software packages for polyhedral computations,
such as cdd [3], allow for computing these generators. The number of generators
of C may be exponential in the size of the inequality description in Equation (1).
For more about complexity issues, we refer to [4].

Based on the concepts of MMBs and the RMS, a refined classification of
reactions has been proposed [7]. A reversible reaction j ∈ Rev is called pseudo-
irreversible if vj = 0, for all v ∈ RMS. A reversible reaction that is not pseudo-
irreversible is called fully reversible. Inside each minimal proper face, the ir-
reversible and the pseudo-irreversible reactions take a unique direction. More
precisely, we have the following properties.

Theorem 2 ([7]). Let G be a minimal proper face of the flux cone C and let
j ∈ {1, . . . , n} be a reaction.

– If j ∈ Irr is irreversible, then vj > 0, for all v ∈ G \ RMS, or vj = 0, for
all v ∈ G. Furthermore, vj = 0, for all v ∈ RMS.

– If j ∈ Rev is pseudo-irreversible, then the flux vj through j has a unique
sign in G \RMS, i.e., either vj > 0, for all v ∈ G \RMS, or vj = 0, for all
v ∈ G \ RMS, or vj < 0, for all v ∈ G \ RMS. For all v ∈ RMS, we have
again vj = 0.

– If j ∈ Rev is fully reversible, there exists v ∈ RMS such that vj 6= 0. We can
then find pathways v+, v−, v0 ∈ G \ RMS with v+

j > 0, v−

j < 0 and v0
j = 0.

Example 3. In the ILLUSNET network, reaction 2 is pseudo-irreversible, while
reactions 4 and 5 are fully reversible. In the context of the minimal proper face
G1, the pseudo-irreversible reaction 2 operates only in the forward direction, i.e.,
v2 > 0 for all v ∈ G1 \ RMS, while it operates in the backward direction in the
context of the face G2.

In the following, removing a reaction means that the flux through this reac-
tion is constrained to zero. Based on the refined reaction classification, we stud-
ied in [8] the consequences of removing a reaction in terms of the capabilities
of the remaining reactions in the network. A zero flux through some reaction
may imply a zero flux through many other reactions. It has been shown that
the reversibility property is an important key to elucidate interactions between
reactions. For instance, the removal of a (pseudo-)irreversible reaction has no
effect on the fully reversible reactions, and all reactions in an enzyme subset [11]
must have the same reversibility type (irreversible, pseudo-irreversible, or fully
reversible).
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In the following, we are interested in gene deletion. More precisely, we study
how the flux cone is changed if a reaction associated with the deleted gene is
removed. This reaction will be called the target reaction. Based on the math-
ematical results above, the following section establishes a relationship between
the changes in the flux cone and the reversibility type of the target reaction.

3 Constraint-based analysis of gene deletion

Let τ ∈ {1, . . . , n} be the target reaction associated with the deleted gene. To
simulate gene deletion, we constrain the flux through reaction τ to zero. This
leads to the altered flux cone

C ′ = {v ∈ Rn | Sv = 0, vτ = 0, vi ≥ 0, for all i ∈ Irr} (4)

which contains all possible steady-state flux distributions over the altered net-
work.

The altered flux cone C ′ can be described using an existing description of
the flux cone C. To do this, the elementary mode approach takes advantage of
the conservation property of EMs: if the flux through a reaction is constrained
to zero, the set of EMs of the altered network is the set of all EMs which do not
involve this reaction [6, 14].

Example 4. In the ILLUSNET network, if we constrain the flux through reaction
4 to zero, the elementary modes of the altered flux cone C ′ are e1, e5 and e6,
which do not involve reaction 4.

To describe the metabolic network after a gene deletion, the EM approach
does not explicitly take into account the reversibility type of the target reaction.
However, this becomes possible by using minimal metabolic behaviors and the
reversible metabolic space. Mathematically, the cone C ′ defined in Equation (4)
is also given by C ′ = C ∩ {v ∈ Rn | vτ = 0}. Therefore, we may deduce an outer
description of the altered cone C ′ from an outer description of the original cone
C. This deduction depends on the reversibility type of the target reaction τ .

3.1 Removing an irreversible reaction

In analogy with EMs, there is the following conservation property for MMBs: if
the flux through an irreversible reaction is constrained to zero, the set of MMBs
of the new network is the set of all MMBs which do not involve this reaction.
Hence, if reaction τ is irreversible, this conservation property guarantees that
the MMBs of C ′ are exactly the MMBs D of C for which j 6∈ D. The reversible
metabolic space does not change, i.e., RMS′ = RMS.
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3.2 Removing a pseudo-irreversible reaction

In this case, only MMBs in which reaction τ is not involved are kept, and new
ones are generated. The generation of new MMBs relies on the adjacency property
of the minimal proper faces of the cone C [3]. Indeed, consider the hyperplane
H = {v ∈ Rn | vτ = 0}. Let H+ = {v ∈ Rn | vτ > 0} (resp. H− = {v ∈ Rn |
vτ < 0}) be the positive (resp. negative) half-space supported by the hyperplane
H. Then H partitions the set of minimal proper faces of C into three parts: the
set J+ of positive minimal proper faces G for which G \RMS ⊆ H+, the set J−

of negative minimal proper faces G for which G \RMS ⊆ H−, and the set J0 of
zero minimal proper faces contained in H. The new minimal proper faces of C ′

are obtained by combining a positive and a negative minimal proper face that are
contained in a (t + 2)−dimensional face of the flux cone C [3]. Again, t denotes
the dimension of the RMS. Since only positive combinations are performed, all
irreversible reactions defining a minimal proper face G1 will define a new face
G′ if the latter is obtained by combining G1 with another minimal proper face
G2. The MMB D′ associated with G′ is then the union of the MMBs D1 and D2

associated with G1 and G2, respectively. Therefore, the new MMBs of the cone
C ′ can be computed by (a) identifying positive and negative MMBs associated
with the positive and negative minimal proper faces of C, (b) computing all
possible unions between positive and negative MMBs of C, and (c) keeping only
those which are minimal.
Finally, the reversible metabolic space does not change, i.e., RMS′ = RMS.

3.3 Removing a fully reversible reaction

The unique effect of removing a fully reversible reaction is the reduction of the
dimension of the reversible metabolic space, i.e., dim(RMS′) = dim(RMS) − 1.
The MMBs of C and C ′ are the same.
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Fig. 2. Here, 2(a) gives a 3D illustration of the flux cone C, 2(b) shows the altered
flux cone C

′ after removing the irreversible reaction 3. Finally, 2(c) shows the altered
cone C

′ after removing the fully reversible reaction 4.
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Example 5. Fig. 2 shows the flux cone C and the altered cone C ′ depending on
the reversibility type of the target reaction. Fig. 2(b) shows the cone C ′ after
the removal of the irreversible reaction 3. In this case, the reversible metabolic
space does not change and only the MMB D1, which does not involve reaction
3, is still an MMB for the cone C ′. Fig. 2(c) shows the cone C ′ after the removal
of the fully reversible reaction 4. In this case, the flux cone becomes pointed,
i.e., the reversible metabolic space is reduced to the origin {0}, and the MMBs
of C and C ′ are the same.

The results above can be extended to predict the effect on the flux cone
when constraining the reversibility of some reaction. If a reversible reaction ι is
constrained to operate in the positive (resp. negative) direction only, the resulting
flux cone will be C ′′ = C ∩ {v ∈ Rn | vι ≥ 0} (resp. C ′′ = C ∩ {v ∈ Rn |
vι ≤ 0}). Again, the description of C ′′ can be deduced from that of the flux
cone C depending on the reversibility type of reaction ι. Indeed, if ι is pseudo-
irreversible, the MMBs of C ′′ are the MMBs of the altered cone C ′, defined
in Equation (4), together with the MMBs corresponding to the positive (resp.
negative) minimal proper faces of C. The reversible metabolic space does not
change, i.e., RMS′′ = RMS. On the other hand, if ι is fully reversible, the
MMBs of C ′′ are the MMBs of C, together with a new MMB D = {ι} and
dim(RMS′′) = dim(RMS) − 1.

4 Conclusion

In this paper, we have shown that the outcome of deleting a gene or constraining
the reversibility of some reaction mainly depends on the reversibility type of the
target reaction. Possible effects include not only changes in the steady-state flux
cone, but also changes in the reversibility of reactions. Indeed, some reversible
reactions become unable to operate in the forward and backward direction, while
others become unable of carrying any flux under steady-state conditions. The
importance of a target reaction can then be assessed by the amount of all these
changes.
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15. D. Segrè, D. Vitkup, and G. M. Church. Analysis of optimality in natural and
perturbed metabolic networks. Proc. Natl. Acad. Sci. U.S.A., 99(23):15112–15117,
2002.



56

Mendelian error detection in complex pedigrees using
weighted constraint satisfaction techniques

Marti Sanchez, Simon de Givry, Thomas Schiex
{msanchez,degivry,tschiex}@toulouse.inra.fr

INRA-UBIA Toulouse, France

Abstract. With the arrival of high throughput genotyping techniques, the detec-
tion of likely genotyping errors is becoming an increasingly important problem.
In this paper we are interested in errors that violate Mendelian laws. The problem
of deciding if Mendelian error exists in a pedigree is NP-complete [1]. Existing
tools dedicated to this problem may offer different level of services: detect sim-
ple inconsistencies using local reasoning, prove inconsistency, detect the source
of error, propose an optimal correction for the error. All assume that there is
at most one error. In this paper we show that the problem of error detection, of
determining the minimum number of error needed to explain the data (with a pos-
sible error detection) and error correction can all be modeled using soft constraint
networks. Therefore, these problems provide attractive benchmarks for weighted
constraint network (WCN) solvers. Because of their sheer size, these problems
drove us into the development of a new WCN solver toulbar2 1 which solves
very large pedigree problems with thousands of animals, including many loops
and several errors. This paper is a summary of an extended version to appear [17].

Biological background and motivations

A pedigree is defined by a set of individuals, their parental relationship and their as-
sociated genetic information. For each individual we consider its genotype, that is the
pair of alleles (genetic information at one position in the chromosome) inherited from
the parents. An individual is called a founder if its parents are not among the individ-
uals present in the pedigree. Genotypes are not always completely observable and the
indirect observation of a genotype (its expression) is termed the phenotype. The genetic
information may be corrupted because of experimental and human errors. We only con-
sider in this paper typing errors, also called phenotype error. A typing/phenotype error
means simply that the phenotype in the pedigree is incompatible with the true (un-
known) genotype. Phenotype errors are also called Mendelian errors when they make
a pedigree inconsistent with Mendelian law of inheritance which states that the pair of
alleles of every individual is composed of one paternal and one maternal allele. The
problem of checking pedigree consistency is actually shown to be NP-complete in [1].

The detection and correction of errors is crucial before the data can be further ex-
ploited. Because of its NP-completeness, most existing tools only offer a limited poly-
nomial time checking procedure. The different tools we are aware of that try to tackle

1 toulbar2 and mendelsoft are accessible from: http://www.inra.fr/mia/T/MendelSoft/
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this problem are either incomplete, restricted by strong assumptions (such as unique
error), or incapable of dealing with large problems.

In this paper, we introduce soft constraint network models, the problem of deter-
mining the minimum number of errors needed to explain the data and the problem of
proposing an optimal correction to an error. In Section 2, we describe the algorithms
used to solve these problems. We report extensive results using the weighted constraint
network solver toulbar2 and other solvers in Section 3.

1 Modeling the problems

A Weighted Constraint Network (WCN) (X ,D,C ) [6] is defined by a set of n variables
X = {x1, . . . ,xn}, a set of matching domains D = {D1, . . . ,Dn} with maximum size
equal to d and a set of e constraints C . Every variable xi ∈ X takes its value in the
associated domain Di. A constraint cS ∈ C , is a cost function that assigns an integer
cost (from 0 to a maximum k) to all the possible assignments of variables in S. The
minimum and maximum costs will be also denoted by⊥ and>. We redefine the sum to
include an absorbing element k: a⊕b = min{k,a+b}. The set S is called the scope of
the constraint and |S| its arity. For every variable assignment A, cS(A[S]) ∈ N represents
the cost of the constraint for the given assignment where A[S] is the projection of A on
the constraint scope S. In this paper we consider arities of one, two and three: a unary
weighted constraint Ci is a cost function Ci(a ∈ Di)→ [0..k]. A binary constraint Ci j is
a cost function Ci j(a ∈ Di,b ∈ D j)→ [0..k] A ternary constraint Ci jl is a cost function
Ci jl(a ∈ Di,b ∈ D j,c ∈ Dl)→ [0..k]. We assume the existence of a unary constraint Ci
for every variable and a zero-arity constraint (i.e. a constant), noted C∅.

The aim is then to find an assignment A of all variables such that the sum of all tuple
costs

L
cS∈C cS(A[S]) is minimum. This is called the Weighted Constraint Satisfaction

Problem (WCSP), and is NP-hard. Several recent algorithms for tackling this prob-
lem, all based on the maintenance of local consistency properties have been recently
proposed [8, 4, 7]. They are presented in Section 2.

Now consider a pedigree defined by a set I of individuals. For a given individual
i ∈ I, we note pa(i) the set of parents of i. Either pa(i) 6= ∅ (non founder) or pa(i) = ∅
(founder). At the locus considered, the set of possible alleles is denoted by {1, ...,m}.
Therefore, each individual carries a genotype defined as an unordered pair of alleles
(one allele from each parent, both alleles can be identical). The set of all possible geno-
types is denoted by G and has cardinality m(m+1)

2 . For a given genotype g ∈ G, the two
corresponding alleles are denoted by gl and gr and the genotype is also denoted as gl |gr.
By convention, gl ≤ gr in order to break symmetries between equivalent genotypes (e.g.
1|2 and 2|1). The experimental data is made of phenotypes. For each individual in the
set of observed individuals I′ ⊂ I, its observed phenotype restricts the set of possible
genotypes to those which are compatible with the observed phenotype. This set is de-
noted by G(i) (very often G(i) is a singleton, observation is complete).

A corresponding weighted constraint network encoding this information uses one
variable per individual i.e. X = I. The domain of every variable i ∈ X is simply defined
as the set of all possible genotypes G. If an individual i has an observed phenotype,
a unary soft constraint that involves the variable i is added. To model the possibility
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of typing errors, genotypes in G which are incompatible with the observed phenotype
G(i) should not be completely forbidden. Instead, a soft constraint forbids them with
a cost of 1 (since using such a value represents one typing error). Finally, to encode
Mendelian law, and for every non founder individual i ∈ X , a single ternary constraint
involving i and the two parents of i, pa(i) = { j,k} is added. This constraint assigns
cost 0 to triples (gi,g j,gk) of genotypes that verify Mendelian inheritance i.e. such that
one allele of gi appears in g j and the other appears in gk. Equivalently: (gl

i ∈ g j ∧gr
i ∈

gk)∨ (gl
i ∈ gk ∧ gr

i ∈ g j). Ternary constraints assign the maximum cost k to forbidden
combinations. For a pedigree with n individuals among which there are f founders, with
m possible alleles, we obtain a final WCSP with n variables, a maximum domain size
of m(m+1)

2 , n unary constraints (the unobserved individuals have a trivially null unary
constraint) and n− f ternary constraints.

If we consider an assignment of all variables to indicate the real genotype of all
individuals, the sum of all the costs induced by all unary constraints on this assignment
precisely gives the number of errors made during typing. Finding an assignment with
a minimum number of errors follows the traditional parsimony principle (or Occam’s
razor) and is consistent with a low probability of independent errors (quite reasonable
here). This defines the Parsimony problem. One solution of the corresponding WCSP
with a minimum cost therefore defines a possible diagnostic. The model shifts from
satisfaction to optimization.
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Fig. 1. Left: A pedigree taken from [14]. Right: its corresponding WCSP.

Example 1. An example is given in Fig. 1. There are n = 12 individuals and m = 3 alleles. A box
corresponds to a male individual and an ellipse to a female. The arcs describe parental relations
(individuals 1 and 2 have three children 3,4, and 5). Individuals 1,2,6, and 7 ( f = 4) are founders.
The possible genotypes are G = {1|1,1|2,1|3,2|2,2|3,3|3}. 7 individuals (1,3,6,7,10,11, and 12)
have an observed phenotype (a single genotype). The corresponding WCSP has 12 variables, 8
ternary constraints and 7 soft unary constraints. The minimum number of typing errors is one.
An optimal solution is {(1,2|2), (2,1|2), (3,2|2), (4,1|2), (5,2|2), (6,2|2), (7,2|2), (8,1|2),
(9,2|2), (10,2|2), (11,1|2), (12,2|2)} such that the erroneous typing 2|3 of individual 12 has
been changed to 2|2.
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1.1 Error correction

When errors are detected, one would like to optimally correct them. The simple parsi-
mony criterion is usually not sufficient to distinguish alternative values. More informa-
tion needs to be taken into account. Being errors and Mendelian inheritance typically
stochastic processes, a probabilistic model is attractive. A Bayesian network is a net-
work of variables related by conditional probability tables (CPT) forming a directed
acyclic graph. It allows to concisely describe a probability distribution on stochastic
variables. To model errors, a usual approach is to distinguish the observation O and the
truth T . A CPT P(O|T ) relates the two variables and models the probability of error.

Following this, we consider the following model for error correction: we first have a
set of n variables Ti each representing the true (unknown) genotype of individual i. The
domain is G. For every observed phenotype, an extra observed variable Oi is introduced.
It is related to the corresponding true genotype by the CPT Pe

i (Oi|Ti). In our case, we
assume that there is a constant α probability of error: the probability of observing the
true genotype is 1−α and the remaining probability mass is equally distributed among
remaining values.

For the individual i and its parents pa(i), a CPT Pm
i (Ti|pa(i)) representing Mendelian

inheritance connects Ti and its corresponding parent variables. Finally, prior probabili-
ties P f (i) for each genotype must be given for every founder i. These probabilities are
obtained by directly estimating the frequency of every allele in the genotyped popula-
tion. The probability of a complete assignment P(O,T ) (all true and observed values)
is then defined as the product of the three collections of probabilities (Pe,Pm and P f ).
Note that equivalently, its log-probability is equal to the sum of the logarithms of all
these probabilities.

The evidence given by the observed phenotypes G(i) is taken into account by re-
ducing the domains of the Oi variables to G(i). One should then look for an assignment
of the variables Ti, i ∈ I′ which has a maximum a posteriori probability (MAP). The
MAP probability of such an assignment is defined as the sum of the probabilities of all
complete assignments extending it and maximizing it defines an NPPP-complete prob-
lem [15], for which there exists no exact methods that can tackle large problems. The
PEDCHECK solver [13, 14] tries to solve this problem using the extra assumption of a
unique already identified error. This is not applicable in large data-sets. Another very
strong assumption (known as the Viterbi assumption) considers that the distribution
is entirely concentrated in its maximum and reduces MAP to the so-called Maximum
Probability Explanation problem (MPE) which simply aims at finding a complete as-
signment of maximum probability. Using logarithms this problem directly reduces to
a WCSP problem where each CPT is transformed in an additive cost function. This
allows to solve MPE using WCSP dedicated tools.

2 Soft constraint algorithms: extension to ternary constraints

In order to find an optimal solution and prove its optimality, a classical depth-first
branch and bound algorithm is applied. An initial upper bound (>) is given by the
number of genotyping data plus one for the parsimony pedigree problem. For MPE, we
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multiply for each individual the minimum probabilities different from zero of Pe, Pm

and P f (see Section 1.1) and take the opposite of its logarithm (to get additive positive
costs). Each time a better solution is found, its cost becomes the new upper bound.

Inside branch and bound at each node of the search we enforce a local consistency.
In this section, we present several local consistency properties, previously defined for
binary constraints [7] and extended to the case of ternary constraints in order to deal
with our pedigree problem. The technical difficulty resides in the simultaneous enforce-
ment of two important soft local consistency properties (AC and DAC which are defined
below) in polynomial time. We show how to enforce DAC in one direction of a ternary
constraint without breaking AC in the two other directions. This allows to close an open
question from [4] (Section 4) “whether a form of directional k-consistency can be es-
tablished in polynomial time for k > 2”. The answer is yes for ternary constraints and
we believe it can be generalized to any bounded constraint arity.

Two WCSPs defined over the same variables are said to be equivalent if they define
the same cost distribution on complete assignments. Local consistency properties are
widely used to transform problems into equivalent simpler ones. When enforcing a
local consistency property at every node of the search, implicit costs can be deduced
and so the search space can be hopefully reduced and variable values pruned earlier (a
non trivial lower bound is given by C∅).

The simplest form of local consistency we used is node consistency (NC): ∀xi ∈
X ,(∃a ∈ Di/Ci(a) =⊥)∧ (∀a ∈ Di/C∅⊕Ci(a) <>). Any WCSP can be easily trans-
formed into an equivalent NC instance by projecting every unary constraint towards
C∅ and subsequently pruning unfeasible values. We continue by extending the notion
of soft (directional) arc consistency to ternary cost functions, for this, we extend the
classic notion of support. Given a binary constraint Ci j, b ∈ D j is a simple support for
a∈Di if Ci j(a,b) =⊥. Similarly, for directional arc consistency, b∈D j is a full support
for a ∈ Di if Ci j(a,b)⊕C j(b) =⊥.

For a ternary cost function Ci jk, we say that the pair of values (b ∈ D j,c ∈ Dk)
is a simple support for a ∈ Di if Ci jk(a,b,c) = ⊥. Similarly, we say that the pair of
values (b∈D j,c∈Dk) is a full support for a∈Di if Ci jk(a,b,c)⊕Ci j(a,b)⊕Cik(a,c)⊕
C jk(b,c)⊕C j(b)⊕Ck(c) =⊥.

A WCSP is arc consistent (AC) if every variable is NC and every value of its domain
has a simple support in every constraint. Given a static variable ordering, a WCSP is
directional arc consistent (DAC) if every value of every variable xi has a full support in
every constraint Ci j such that j > i and in every constraint Ci jk such that j > i∧ k > i.
A WCSP is full directional arc consistent (FDAC) if it is both AC and DAC [8].

The enforcing of simple and full supports for ternary constraints has to be carefully
adapted from the previous existing algorithms for binary constraints. The idea is to
extend unary and binary costs involved in the scope of ternary constraint Ci jk in such
a way that a maximum projection is achievable on variable i without losing simple
supports for variables j and k. The details of how this extension is done, proofs and
implementation are given in the longer version [17].

The strongest form of local consistency we use is existential directional arc con-
sistency (EDAC) [7]. A WCSP is existential arc consistent (EAC) if every variable xi
has at least one value a ∈ Di such that Ci(a) = ⊥ and a has a full support in every



61

constraint. A WCSP is EDAC if it is both FDAC and EAC. EAC enforcement is done
by finding at least one fully supported value per variable i.e. which is fully supported
in all directions. If there is no such value for a given variable, then projecting all the
constraints towards this variable will increase the lower bound, resulting in at least one
fully supported value.

The complexity of ternary EDAC is time O(ed3max{nd,>}) and space O(ed2),
where n is the number of variables, d is the maximum domain size, e is the number of
constraints and > is the maximum cost. The proof can be found in [17].

We maintain EDAC during search, producing a lower bound in C∅. The DAC vari-
able ordering corresponds to the pedigree file order, which is usually a temporal order.
If C∅ ≥> then, the algorithm backtracks. We use dynamic variable and value ordering
heuristics. We add a basic form of conflict back-jumping by always choosing the last
variable in conflict (i.e. its assignment results in an empty domain or C∅ ≥>) [10]. The
value ordering heuristic chooses first the fully supported value found by EAC. We use
a binary branching scheme: the chosen variable is assigned to its fully supported value
or this value is removed from its domain. Finally, we apply a limited form of variable
elimination during the search as proposed in [9].

3 Experimental evaluation

In the experimental section we want to compare the accuracy of error detection for
the different models introduced: MAP, MPE and Parsimony. The most complex MAP
problem is a mixed optimization/integration problem that can be only solved by ded-
icated Bayes net solvers. Among them, we have chosen Samiam (version 2.2.1) be-
cause it is one of the most efficient and robust solver available according to the last
BN solving competition. The MPE problem is a pure optimization problem which re-
quires however to be able to deal with very large costs such as those produced by log-
arithms of probabilities (see Section 2). These problems can be addressed again by
Samiam but also by toulbar2 which has been extended to use very large integer
costs. MPE can only be solved on small or mid-size instances. Finally, the simplest
Parsimony problem can be directly tackled by toulbar2.We also used a version of
toolbar called toolbar/BTD which integrates a specific tree-decomposition based
branch and bound (version 2.2) [5] that should perform well on pedigree problems
which have usually a tree-width much smaller than the number of variables. It also
uses only binary EDAC and thus will show the interest of higher order consistencies.
Parsimony problem can be solved on very large instances.

Because the pedigree analysis problem is not a new problem, one must also ac-
knowledge the existence of different solvers for the real problem. However, none of
these tools will be considered in the analysis because they either make very strong as-
sumptions incompatible with the pedigree size considered (PedCheck [13] assumes that
there is only one error), may be incomplete solvers (CheckFam [16] can prove incon-
sistency but produces only local corrections on nuclear families that may not always
restore consistency while GenCheck [2] provide corrections that do not optimize par-
simony of likelihood either) or have very limited efficiency compared to the solvers
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considered here (GMCheck [18] tackles the MPE problem but is totally dominated by
SamIam).

Two types of pedigree have been used to perform the evaluation: random pedigree
and real pedigree. The random pedigree have been generated using a pedigree generator
designed by geneticists at INRA. We then randomly erase the genotypes of some indi-
viduals with a given probability and introduce errors in some individuals with a given
probability. The original correct genotypes are recorded in order to be able to evaluate
the accuracy of error correction. We used a genotyping error probability α = 5% (see
Section 1.1). For random pedigree, all experiments have been performed on a 3 GHz
Intel Xeon with 2 Gb of RAM.

Real instances are human genotyped pedigrees (genetic studies of eye, cancer and
Parkinson diseases) as reported in [13, 14] and two groups (berrichon and langlade)
are pedigree instances coming from sheep animals provided by the CTIG (Centre de
Traitement de l’Information Genetique) in France. For real pedigree, all experiments
have been performed on a 3 GHz Intel Xeon 64-bit with 16 Gb of RAM.

To compare the error prediction accuracy provided by the MAP, MPE and Par-
simony, we had to limit ourselves to relatively small instances that could be solved
to optimality by Samiam. The MPE problem has been solved using toulbar2 and
Samiam. Finally, Parsimony was solved using toulbar2 only.

Two features were evaluated: the prediction of the individuals (denoted ind) contain-
ing an error in the pedigree and the prediction of the correct genotype (denoted by geno).
The sensitivity of the prediction is the percentage of features that should be detected
which are actually correctly predicted. Similarly, specificity is percentage of predicted
features which are correct. Summarizing, MAP has 10% higher genotype specificity,
meaning that is more robust in predicting the corrections of genotypes, as expected.
However, it is too costly in terms of CPU time and can only deal with small instances.
MPE gives very similar results while Parsimony is interesting for just restoring consis-
tency. In our experiments toulbar2 outperforms Samiam on the MPE problem. We
further compared Parsimony and MPE on larger data sets using toulbar2. This is
reported in Fig. 2. MPE has nearly a 10% better individual sensitivity and a 15% better
genotype sensitivity and specificity on larger problems. We observe that the CPU-time
needed to solve the instances is highly sensible to the treewidth for both MPE and Par-
simony. For tree-widths above 50, toulbar2 encountered some hard MPE instances
it could not solve in the time limit 2.

Since our aim is to solve very large real size instances, we conclude the evaluation
by comparing time efficiency of different solvers on the simplest Parsimony problem.
Indeed, on the largest real instances defined by the sheep pedigree, MPE remained
unsolvable in less than 10 hours. Despite its lower accuracy, Parsimony still provides
the essential service of consistency restoration and this with minimum loss of data, a
criterion that may look attractive in practice to biologists.

2 Notice that the treewidth is anti-monotone in the number of individuals. This is because the
increase in the treewidth is achieved (paramterizing the simulator) by increasing the number
of males in a population. Increasing the number of males has the side effect of decreasing the
number of individuals.
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Fig. 2. Left: Histograms compare the sensitivities and specificities of MPE and Parsimony.
Right: toulbar2 CPU-time for both problems.

We tried several solvers and observed that as the problem size increases, toulbar2
has the best performance. In fact only toulbar2 is able to tackle real pedigree in-
stances. For the parsimony problem, we were able to solve real pedigrees with up to
120,000 individuals in a few seconds. These problems were modeled as soft constraint
networks with up to 9,500 variables and 17,000 constraints (after toulbar2 prepro-
cessing and variable elimination). All real pedigrees can be solved in a maximum of one
minute of CPU time and have from 2 to 106 errors found. Solving such a large network
is possible thanks to the powerful lower bounds provided by soft local consistencies,
in particular EDAC extended to ternary constraints. As the size of instances increase
EDAC is an order of magnitude better. The combination of the conflict heuristic and
variable elimination has the best performance and corresponds to the combination used
in all the previous experiments.

4 Conclusion

This paper deals with detecting Mendelian errors and providing an optimal correction.
Compared to existing tools dedicated to this problem [13, 16, 2, 18], the novelty of our
approach is to provide an optimal correction based on parsimony or maximum likeli-
hood criterion for large pedigree data. This application lead us to the development of
new algorithms, described in Section 2, for ternary constraints. We believe this result
can be directly generalized to n-ary constraints, by considering all the intermediate arity
levels. Using the parsimony model and the dedicated extension to ternary constraints we
where able to solve large real pedigree instances of 9,500 variables that where unsolved
up to now.

For MAP and MPE, we have shown on simulated data that MPE is a good approxi-
mation of MAP and is orders of magnitude faster to solve than MAP. However, on large
real pedigrees, MPE could not be solved by toulbar2.

In the future, we will explore more complex probabilistic models in order to detect
non Mendelian errors. It implies working on multi-locus models, where other inter-
esting biological questions have been recently investigated by the AI community [11,
12].
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